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What is the meaning of calibration?

Given a model of a physical system, calibration means:
¢ frequentist: estimation of model parameters
e Bayesian: inference of model parameters



Motivating application

What is the problem?

e maximizing economic recovery of hydrocarbons from
subsurface reservoirs

What'’s available?
e models of the reservoirs
e geophysical data gathered on site



Example - Umiat oil field




Oil reservoir simulator
Eclipse oil reservoir simulation software by Schlumberger
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Qil reservoir simulator

Reservoir simulator principles:
e conservation of energy and mass
isothermal fluid phase behavior
Darcy approximation (fluid flow through porous media):

KA, P)

L
P4 \A P:

k permeability, i viscosity
Q discharge rate (m®/s)



The problem - Oil reservoir model

e 2D 100 x 12 grid blocks (Tavassoli et al. 2004)
€ parameters: N
) Thorepozr quality sand permeab|!|Fy (Kiow)
e good quality sand permeability (Knigh)
o discontinuity (throw)

PRODUCER

i
|
| I

ll
I
I“"“"mllmwlwﬂlil||
Il I Il
e
it




The problem - Oil reservoir model

Observed data — oil/water rates
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¢ running time of the 2D oil reservoir model in Tavassoli et al.
(2004): couple of seconds
e more complex and realistic 3D models - hours/days to run



Calibration of simulators

e We aim at inferring model parameters to quantify
uncertainty in predictions




Relevance of the problem

¢ Calibration of simulators has application in very many
application fields, e.g.:
¢ high energy physics (Higdon et al. 2005)
geophysics (Cui et al. 2009)
astrophysics (Kaufman et al. 2010)
industrial processes (Forrester 2010)
ecology (Schneider et al. 2006)
climatology (Guillas et al. 2004, Wilkinson 2001)
systems biology (Wilkinson 2010)

e quantifying uncertainty is of paramount importance for
balancing risks/costs of decisions



Importance of quantifying uncertainty

e this is what we might want
e inferring model parameters
o obtaining predictive distributions (balance cost of decisions)
e Other desirables:
e including prior information
e approaching sequential estimation
e doing model selection



Importance of quantifying uncertainty

e this is what we might want
e inferring model parameters
o obtaining predictive distributions (balance cost of decisions)
e Other desirables:
e including prior information
e approaching sequential estimation
e doing model selection

¢ Bayesian framework seems to be appropriate



Bayesian calibration of simulators

e Kennedy at al. (2001):

=n(x 6)

6

e 7(x,0) and 4(x) independent and modeled using GPs
e £~ N(0,02) and i.id.




Interpretability of calibration results

¢ Can we really interpret the inferred simulator parameters
as the “real” ones?

e if the model differs from the physical system, then the
interpretation of 0 is questionable

¢ Model misspecification and consequences in Bayesian
inference - see e.g., White (1982) and Miiller (2009)

e Loeppky et al. (2006) studied the problem of model
misspecification in calibration problems



Simplified calibration model - Likelihood

X z=n(x,0)+¢
—>| —

__y=nx8)

¢}

e we have direct access to the log-likelihood:
oglp(Datal6)] = 3 log [V (zln(x;. 8).07)]

e if we place priors 7(6) we can infer 8 - simulation using
Markov chain Monte Carlo (MCMC)

p(0|Data)  p(Data|@)m(0)



Posterior inference - Multimodalities

e Given that the simulator is usually modeling a complex
physical system, the likelihood is often multimodal




Oil reservoir data

¢ As a working example let us consider the 2D oil reservoir
model by Tavassoli et al. (2004)
o “Real” data are generated from the simulator:
zi=n(x;,0) +¢
where 0 represents a set of “true” parameters

Observed data — oil/water rates
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Inference using Metropolis-Hastings

Metropolis-Hastings is—Hastings Metropolis—Hastings
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¢ Poor exploration of the parameter space

¢ Proper exploration of the parameter space via population
based Markov chain Monte Carlo (Pop-MCMC)



Inference using Pop-MCMC

22
¢ bridge from the prior to the posterior via

tempering /%A/// N
tempered posterior oc p(Data|@)!7(8) @\

with t € [0, 1]
e one sampler for each tempered posterior

e samplers sampling independently and
exchanging samples so that invariance of
p(@|Data) is preserved
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Inference using Pop-MCMC
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Inference using Pop-MCMC - Results

Interpretation of the multimodal posterior - throw parameter
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Inference using Pop-MCMC - Results
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Inference using Pop-MCMC - Results
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Inference using Pop-MCMC - Results
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What if the running time of the simulator is
prohibitive?

e Simulators could be so complex to require hours or even
days to run

¢ Fully Bayesian treatment is not viable

e We aim at using the available computational resources to
find parameters and an estimate of the uncertainty (not
Bayesian)



Need for emulators

e Emulators as a proxy for the expensive likelihood
¢ Start from a set of design points (latin hypercubes)
e Emulator using Gaussian Process

negative log-likelihood
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Need for emulators

¢ Marginals of the emulator are Gaussian:

¢ Incremental design for minimization optimizing a utility
(improvement) function (Jones et al. 1998)

1(0) = max(fnin — y(6),0)

expected value:

E[/(8)] = (fnin—u(6))® <W>+s(0)j\[ (W)



Example of incremental design
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Example of incremental design
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Example of incremental design

negative log-likelihood
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Example of incremental design
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Example of incremental design
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Example of incremental design
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Example of incremental design
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Example of incremental design
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Example of incremental design
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Incremental design - Oil reservoir - Results

¢ incremental design on the oil data
e we assumed that computational resources allowed only
100 runs of the simulator

¢ 50 simulations using latin hypercubes
¢ 50 simulations using incremental design



Incremental design - Oil reservoir - Results

true values: 10.4, 131.6, 1.3

Samples from the prior
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Incremental design - Oil reservoir - Results

true values: 10.4, 131.6, 1.3

10.2(11.9) 123.3(11.4) 21.9(39.4)
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Incremental design - Oil reservoir - Results

true values: 10.4, 131.6, 1.3

46.76(37.47) 122.07(_3.37) 19.85( 8.65)
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Conclusions and ongoing work

e This work is part of the ongoing research program of the
Computational Statistics group at UCL on inference in
complex systems

e Calibration of simulators is an important and promising
research area

e ltis a challenging problem even with simplifying
assumptions:

¢ inference over parameters of complex simulators
e expensive to evaluate the likelihood



Conclusions and ongoing work

Ongoing research:
e Composite likelihoods
e Emulators for moderate/large sized data sets
¢ Consistency of estimators in incremental experiment
design?
¢ Hybrid/Manifold Monte Carlo with emulator as potential
field

¢ Design of covariance functions for emulators of differential
equations based simulators

¢ Model selection
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