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What is the meaning of calibration?

Given a model of a physical system, calibration means:
• frequentist: estimation of model parameters
• Bayesian: inference of model parameters



Motivating application

What is the problem?
• maximizing economic recovery of hydrocarbons from

subsurface reservoirs
What’s available?
• models of the reservoirs
• geophysical data gathered on site



Example - Umiat oil field



Oil reservoir simulator
Eclipse oil reservoir simulation software by Schlumberger

* 



Oil reservoir simulator

Reservoir simulator principles:
• conservation of energy and mass
• isothermal fluid phase behavior
• Darcy approximation (fluid flow through porous media):

L 

A 
P2 P1 

Q Q = −kA
µ

(P2 − P1)

L

• k permeability, µ viscosity
• Q discharge rate (m3/s)



The problem - Oil reservoir model
• 2D 100× 12 grid blocks (Tavassoli et al. 2004)
• Three parameters:

• poor quality sand permeability (klow)
• good quality sand permeability (khigh)
• discontinuity (throw)
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The problem - Oil reservoir model
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• running time of the 2D oil reservoir model in Tavassoli et al.
(2004): couple of seconds

• more complex and realistic 3D models - hours/days to run



Calibration of simulators
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• We aim at inferring model parameters to quantify
uncertainty in predictions



Relevance of the problem

• Calibration of simulators has application in very many
application fields, e.g.:

• high energy physics (Higdon et al. 2005)
• geophysics (Cui et al. 2009)
• astrophysics (Kaufman et al. 2010)
• industrial processes (Forrester 2010)
• ecology (Schneider et al. 2006)
• climatology (Guillas et al. 2004, Wilkinson 2001)
• systems biology (Wilkinson 2010)

• quantifying uncertainty is of paramount importance for
balancing risks/costs of decisions



Importance of quantifying uncertainty

• this is what we might want
• inferring model parameters
• obtaining predictive distributions (balance cost of decisions)
• Other desirables:

• including prior information
• approaching sequential estimation
• doing model selection

• Bayesian framework seems to be appropriate
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Bayesian calibration of simulators

• Kennedy at al. (2001):

Physical	
  system	
  

Simulator	
  

x z = ρ η(x, θ) + δ(x) + ε 

y = η(x, θ) 

θ 

• η(x,θ) and δ(x) independent and modeled using GPs
• ε ∼ N (0, σ2

ε ) and i.i.d.



Interpretability of calibration results

• Can we really interpret the inferred simulator parameters
as the “real” ones?

• if the model differs from the physical system, then the
interpretation of θ is questionable

• Model misspecification and consequences in Bayesian
inference - see e.g., White (1982) and Müller (2009)

• Loeppky et al. (2006) studied the problem of model
misspecification in calibration problems



Simplified calibration model - Likelihood

Physical	
  system	
  

Simulator	
  

x z = η(x, θ) + ε 

y = η(x, θ) 

θ 

• we have direct access to the log-likelihood:

log[p(Data|θ)] =
∑

i

log
[
N (zi |η(xi ,θi), σ

2
ε )
]

• if we place priors π(θ) we can infer θ - simulation using
Markov chain Monte Carlo (MCMC)

p(θ|Data) ∝ p(Data|θ)π(θ)



Posterior inference - Multimodalities

• Given that the simulator is usually modeling a complex
physical system, the likelihood is often multimodal



Oil reservoir data
• As a working example let us consider the 2D oil reservoir

model by Tavassoli et al. (2004)
• “Real” data are generated from the simulator:

zi = η(xi , θ̃) + εi

where θ̃ represents a set of “true” parameters
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Inference using Metropolis-Hastings
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• Poor exploration of the parameter space
• Proper exploration of the parameter space via population

based Markov chain Monte Carlo (Pop-MCMC)



Inference using Pop-MCMC

• bridge from the prior to the posterior via
tempering

tempered posterior ∝ p(Data|θ)tπ(θ)

with t ∈ [0,1]

• one sampler for each tempered posterior
• samplers sampling independently and

exchanging samples so that invariance of
p(θ|Data) is preserved



Inference using Pop-MCMC
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Inference using Pop-MCMC - Results

Interpretation of the multimodal posterior - throw parameter
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Inference using Pop-MCMC - Results
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What if the running time of the simulator is
prohibitive?

• Simulators could be so complex to require hours or even
days to run

• Fully Bayesian treatment is not viable
• We aim at using the available computational resources to

find parameters and an estimate of the uncertainty (not
Bayesian)



Need for emulators
• Emulators as a proxy for the expensive likelihood
• Start from a set of design points (latin hypercubes)
• Emulator using Gaussian Process
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Need for emulators

• Marginals of the emulator are Gaussian:

y(θ) ' N (µ(θ), s2(θ))

• Incremental design for minimization optimizing a utility
(improvement) function (Jones et al. 1998)

I(θ) = max(fmin − y(θ),0)

expected value:

E[I(θ)] = (fmin−µ(θ))Φ

(
fmin − µ(θ)

s(θ)

)
+s(θ)N

(
fmin − µ(θ)

s(θ)

)



Example of incremental design
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Example of incremental design
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Example of incremental design
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Example of incremental design
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Example of incremental design
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Incremental design - Oil reservoir - Results

• incremental design on the oil data
• we assumed that computational resources allowed only

100 runs of the simulator
• 50 simulations using latin hypercubes
• 50 simulations using incremental design



Incremental design - Oil reservoir - Results
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Incremental design - Oil reservoir - Results

true values: 10.4, 131.6, 1.3
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Incremental design - Oil reservoir - Results

true values: 10.4, 131.6, 1.3

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●
●●●

●

●

●
●

● ● ●

0 20 40 60 80 100 120

0
20

0
40

0
60

0
80

0

 46.76( 37.47)   122.07(  3.37)    19.85(  8.65)   

months

bb
l/d

ay ● Real
Mean prediction
5th − 95th percentiles



Conclusions and ongoing work

• This work is part of the ongoing research program of the
Computational Statistics group at UCL on inference in
complex systems

• Calibration of simulators is an important and promising
research area

• It is a challenging problem even with simplifying
assumptions:

• inference over parameters of complex simulators
• expensive to evaluate the likelihood



Conclusions and ongoing work

Ongoing research:
• Composite likelihoods
• Emulators for moderate/large sized data sets
• Consistency of estimators in incremental experiment

design?
• Hybrid/Manifold Monte Carlo with emulator as potential

field
• Design of covariance functions for emulators of differential

equations based simulators
• Model selection
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