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Gaussian Process Models - GPMs

par 

latent 

data 

p(par)

p(latent|par) = GP(µ(par),K (par))

p(data|latent)
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GPM - Probit regression example
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GPM - Probit regression example - MAP vs MCMC
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Approximate inference

Approximate marginal likelihood might be inaccurate; no way
to quantify degree of inaccuracy

Quadrature can’t be employed if par is large dimensional

MCMC offers a way to do “exact” inference in these cases

Goal of this work

Study best ways to draw samples p(latent, par|data)
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Challenges in MCMC for GPMs - Structure

Obvious iterative scheme (aka Sufficient Augmentation (SA)
scheme). Alternate between:

Drawing from p(latent|par,data)
Drawing from p(par|latent) (bad idea - see figure)
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Challenges in MCMC for GPMs - Cost & exploration

No exact Gibbs steps - need to employ Metropolis within
Gibbs steps - waste of computations when rejecting

Updates of par cost O(n3)

par can be large dimensional (e.g., Automatic Relevance
Determination (ARD) covariance function)

There are n latent variables (as many as the number of
observations)
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Mitigating coupling effect through reparameterization

Ancillary Augmentation (AA) scheme - reparametrization:

K = LLT ancillary = L−1 latent

Replace sampling of par with p(par|ancillary, data)
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Other strategies

SURR - Surrogate method in Murray and Adams (2010):
reparameterization using cleverly constructed auxiliary
variables

KHR - Joint sampler by Knorr-Held and Rue (2002):
propose new par′ and latent′|par′, data and then jointly
Accept/Reject

ASIS - Interweave AA and SA as in Yu and Meng (2011)
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Transition operators for sampling latent variables

Scaled Metropolis-Hastings (MH) proposals - Neal (1999)

MH v1:
latent′ = latent + α z

MH v2:
latent′ =

√
1− α2 latent + α z

with
z ∼ N (0,K )
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Transition operators for sampling latent variables

Scaled Hybrid Monte Carlo (HMC) with mass matrix M. Negative
Hessian of the log-posterior is K−1 + ∆(f), with ∆ diagonal.

HMC v1 - Christensen et al. (2005)

M = K−1 + ∆(0)

HMC v2 - proposed in this work

M = K−1

Both conveniently implemented by deriving HMC specifying M−1.



Gaussian Process Models
Inference in GPMs using MCMC

Results
Conclusions

Transition operators for sampling latent variables

Manifold MCMC - Girolami and Calderhead (2011)
Simplified Manifold MALA (SMMALA) gradient and
curvature information

ELL-SS - Murray et al. (2010)
Elliptical Slice Sampling adaptation of slice sampling to the
sampling of latent variables in GPMs



Gaussian Process Models
Inference in GPMs using MCMC

Results
Conclusions

Transition operators for sampling par

Metropolis-Hastings (MH) random walk

Hybrid Monte Carlo (HMC) gradient information

Simplified version of Manifold MALA (SMMALA) gradient
and curvature information
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Convergence analysis and efficiency of MCMC algorithms

Models employ a RBF ARD covariance

Convergence speed measured using R̂ statistics. To visualize
convergence between 1000 and 20000 iterations

< 1.1 < < 1.3 < < 2 <

Efficiency measured through (the minimum across variables)
Effective Sample Size (ESS)
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Results

Table: Comparison of transition operators to sample latent|par,data for
data generated from logistic regression GPMs. T is the number of
MCMC iterations

n = 400
d = 2 d = 10

ESS R̂ ESS R̂ #O(n3)
MH v1 22 (7) 8 (1) 1
MH v2 67 (17) 30 (2) 1
SMMALA 457 (212) 48 (5) T + 1
ELL-SS 104 (25) 50 (2) 1
HMC v1 1352 (380) 2962 (155) 3
HMC v2 1566 (342) 2995 (129) 1
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Results

Table: SA - Comparison of transition operators to sample par|latent. In
HMC λ̄ is the average number of leapfrog steps.

n = 400
d = 2 d = 10

ESS R̂ ESS R̂ #O(n3)
MH 2124 (125) 77 (33) T
HMC 12556 (661) 293 (137) T (λ̄+ 1)
SMMALA 10241 (2672) 47 (17) T (d + 2)
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Results

Table: AA - Comparison of transition operators to sample
par|data, ancillary for data generated from logistic regression GPMs.

n = 400
d = 2 d = 10

ESS R̂ ESS R̂ #O(n3)
MH 512 (177) 56 (11) T
HMC 2666 (973) 223 (39) T (d λ̄+ 1)
SMMALA 6877 (1584) 47 (21) T (d + 1)
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Table: Comparison of different strategies to sample latent,par|data in
four UCI data sets modeled using logistic regression GPMs.

Pima Wisconsin SPECT Ionosphere
n = 768, d = 8 n = 683, d = 9 n = 80, d = 22 n = 351, d = 34

ESS R̂ ESS R̂ ESS R̂ ESS R̂
AA 34 (4) 42 (15) 99 (18) 12 (5)
ASIS 35 (8) 47 (11) 215 (23) 24 (8)
KHR 153 (14) 20 (10) 101 (16) 2 (2)
SA 5 (2) 7 (3) 97 (12) 11 (7)
SURR 76 (10) 25 (14) 84 (14) 9 (4)
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Conclusions

Sampling from the posterior of latent variables can be
efficiently done in a number of ways (scaled HMC, ELL-SS)

AA scheme with par sampled using the MH algorithm seems a
good compromise between efficiency and cost

Sampling efficiency is sometimes less than 1% for the best
sampling strategy

Fully automated MCMC for GPMs still an open problem
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