A Comparative Evaluation of Stochastic-based Inference Methods for Gaussian Process Models

Maurizio Filippone

School of Computing Science University of Glasgow maurizio.filippone@glasgow.ac.uk

September 25th, 2013

Outline of the talk

1 Gaussian Process Models

Inference in GPMs using MCMC

Gaussian Process Models - GPMs

・ロト・雪・・雪・・雪・ うらの

GPM - Probit regression example

▲口 ▶ ▲冊 ▶ ▲目 ▶ ▲目 ▶ ● ● ● ● ●

GPM - Probit regression example - MAP vs MCMC

Approximate inference

- Approximate marginal likelihood might be inaccurate; no way to quantify degree of inaccuracy
- \bullet Quadrature can't be employed if par is large dimensional
- MCMC offers a way to do "exact" inference in these cases

Goal of this work

• Study best ways to draw samples p(latent, par|data)

Challenges in MCMC for GPMs - Structure

Obvious iterative scheme (aka Sufficient Augmentation (SA) scheme). Alternate between:

• Drawing from p(latent|par, data)

par

• Drawing from p(par|latent) (bad idea - see figure)

Challenges in MCMC for GPMs - Cost & exploration

- No exact Gibbs steps need to employ Metropolis within Gibbs steps waste of computations when rejecting
- Updates of par cost $O(n^3)$
- par can be large dimensional (e.g., Automatic Relevance Determination (ARD) covariance function)
- There are *n* latent variables (as many as the number of observations)

Mitigating coupling effect through reparameterization

Ancillary Augmentation (AA) scheme - reparametrization:

$$K = LL^{\mathrm{T}}$$
 ancillary $= L^{-1}$ latent

• Replace sampling of par with p(par|ancillary, data)

Other strategies

- SURR Surrogate method in Murray and Adams (2010): reparameterization using cleverly constructed auxiliary variables
- KHR Joint sampler by Knorr-Held and Rue (2002): propose new par' and latent'|par', data and then jointly Accept/Reject
- ASIS Interweave AA and SA as in Yu and Meng (2011)

Transition operators for sampling latent variables

Scaled Metropolis-Hastings (MH) proposals - Neal (1999)

• MH v1: $latent' = latent + \alpha z$ • MH v2: $latent' = \sqrt{1 - \alpha^2} latent + \alpha z$ with

 $z \sim \mathcal{N}(0, K)$

Transition operators for sampling latent variables

Scaled Hybrid Monte Carlo (HMC) with mass matrix M. Negative Hessian of the log-posterior is $K^{-1} + \Delta(\mathbf{f})$, with Δ diagonal.

• HMC v1 - Christensen et al. (2005)

$$M = K^{-1} + \Delta(\mathbf{0})$$

• HMC v2 - proposed in this work

$$M = K^{-1}$$

Both conveniently implemented by deriving HMC specifying M^{-1} .

Transition operators for sampling latent variables

- Manifold MCMC Girolami and Calderhead (2011) Simplified Manifold MALA (SMMALA) gradient and curvature information
- ELL-SS Murray et al. (2010) Elliptical Slice Sampling adaptation of slice sampling to the sampling of latent variables in GPMs

Transition operators for sampling par

- Metropolis-Hastings (MH) random walk
- Hybrid Monte Carlo (HMC) gradient information
- Simplified version of Manifold MALA (SMMALA) gradient and curvature information

Convergence analysis and efficiency of MCMC algorithms

- Models employ a RBF ARD covariance
- Convergence speed measured using \hat{R} statistics. To visualize convergence between 1000 and 20000 iterations

 $\mathbf{D} < 1.1 < \mathbf{D} < 1.3 < \mathbf{D} < 2 < \mathbf{D}$

• Efficiency measured through (the minimum across variables) Effective Sample Size (ESS)

Results

Table: Comparison of transition operators to sample latent|par, data for data generated from logistic regression GPMs. T is the number of MCMC iterations

	<i>d</i> = 2		d = 10		
	ESS	Ŕ	ESS	Ŕ	$\#O(n^3)$
MH v1	22 (7)		8 (1)	μIJ	1
MH v2	67 (17)		30 (2)		1
SMMALA	457 (212)		48 (5)		T+1
ELL-SS	104 (25)		50 (2)		1
HMC v1	1352 (380)		2962 (155)		3
HMC v2	1566 (342)		2995 (129)		1

Results

Table: SA - Comparison of transition operators to sample par|latent. In HMC $\bar{\lambda}$ is the average number of leapfrog steps.

	d = 2		d = 10)	
	ESS	Ŕ	ESS	Ŕ	$\#O(n^3)$
MH	2124 (125)	IIII	77 (33)		Т
HMC	12556 (661)		293 (137)		$T(ar{\lambda}+1)$
SMMALA	10241 (2672)		47 (17)		T(d+2)

Results

Table: AA - Comparison of transition operators to samplepar data, ancillary for data generated from logistic regression GPMs.

	<i>d</i> = 2	d = 10			
	ESS	Ŕ	ESS	Ŕ	$\#O(n^3)$
MH	512 (177)		56 (11)		Т
HMC	2666 (973)		223 (39)		$T(dar{\lambda}+1)$
SMMALA	6877 (1584)		47 (21)		T(d+1)

Results

Table: Comparison of different strategies to sample latent, par|data in four UCI data sets modeled using logistic regression GPMs.

	Pima		Wisconsin		SPECT		lonosphere	
	n = 768, d = 8		n = 683, d = 9		n = 80, d = 22		n = 351, d = 34	
	ESS	Ŕ	ESS	Ŕ	ESS	Ŕ	ESS	Ŕ
AA	34 (4)		42 (15)		99 (18)	IIII	12 (5)	
ASIS	35 (8)		47 (11)	····	215 (23)		24 (8)	
KHR	153 (14)		20 (10)		101 (16)		2 (2)	
SA	5 (2)	-1	7 (3)		97 (12)		11 (7)	
SURR	76 (10)		25 (14)		84 (14)		9 (4)	

Conclusions

- Sampling from the posterior of latent variables can be efficiently done in a number of ways (scaled HMC, ELL-SS)
- AA scheme with par sampled using the MH algorithm seems a good compromise between efficiency and cost
- Sampling efficiency is sometimes less than 1% for the best sampling strategy
- Fully automated MCMC for GPMs still an open problem