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Gaussian Process Models

Gaussian Process Models - GPMs

par p(p‘(ll')

<‘> latent p(latent|par) = GP(u(par), K(par))

Q data p( [latent)



Gaussian Process Models

GPM - Probit regression example
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Gaussian Process Models

GPM - Probit regression example - MAP vs MCMC
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Gaussian Process Models

Approximate inference

@ Approximate marginal likelihood might be inaccurate; no way
to quantify degree of inaccuracy

@ Quadrature can't be employed if par is large dimensional

MCMC offers a way to do “exact” inference in these cases

Goal of this work

@ Study best ways to draw samples p(latent, par| )




Inference in GPMs using MCMC

Challenges in MCMC for GPMs - Structure

Obvious iterative scheme (aka Sufficient Augmentation (SA)
scheme). Alternate between:

e Drawing from p(latent|par, )

e Drawing from p(par|latent) (bad idea - see figure)
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Inference in GPMs using MCMC

Challenges in MCMC for GPMs - Cost & exploration

No exact Gibbs steps - need to employ Metropolis within
Gibbs steps - waste of computations when rejecting

Updates of par cost O(n?)

par can be large dimensional (e.g., Automatic Relevance
Determination (ARD) covariance function)

There are n latent variables (as many as the number of
observations)



Inference in GPMs using MCMC

Mitigating coupling effect through reparameterization

Ancillary Augmentation (AA) scheme - reparametrization:

K=LL" ancillary = L' latent

@ Replace sampling of par with p(par|ancillary, )
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Inference in GPMs using MCMC

Other strategies

@ SURR - Surrogate method in Murray and Adams (2010):
reparameterization using cleverly constructed auxiliary

variables

@ KHR - Joint sampler by Knorr-Held and Rue (2002):
propose new par’ and latent’|par’, and then jointly
Accept/Reject

@ ASIS - Interweave AA and SA as in Yu and Meng (2011)



Inference in GPMs using MCMC

Transition operators for sampling latent variables

Scaled Metropolis-Hastings (MH) proposals - Neal (1999)

e MH vl:
latent’ = latent + « z
e MH v2:
latent’ = /1 — a?latent + a z
with

z ~ N(0,K)



Inference in GPMs using MCMC

Transition operators for sampling latent variables

Scaled Hybrid Monte Carlo (HMC) with mass matrix M. Negative
Hessian of the log-posterior is K~! + A(f), with A diagonal.

@ HMC vl - Christensen et al. (2005)
M= K4+ A(0)
@ HMC v2 - proposed in this work
M=K!

Both conveniently implemented by deriving HMC specifying M~1.



Inference in GPMs using MCMC

Transition operators for sampling latent variables

e Manifold MCMC - Girolami and Calderhead (2011)
Simplified Manifold MALA (SMMALA) gradient and
curvature information

@ ELL-SS - Murray et al. (2010)

Elliptical Slice Sampling adaptation of slice sampling to the
sampling of latent variables in GPMs



Inference in GPMs using MCMC

Transition operators for sampling

@ Metropolis-Hastings (MH) random walk
@ Hybrid Monte Carlo (HMC) gradient information

e Simplified version of Manifold MALA (SMMALA) gradient
and curvature information



Results

Convergence analysis and efficiency of MCMC algorithms

@ Models employ a RBF ARD covariance

@ Convergence speed measured using R statistics. To visualize
convergence between 1000 and 20000 iterations

I<ll<i<1l3<i<2<

e Efficiency measured through (the minimum across variables)
Effective Sample Size (ESS)



Results

Table: Comparison of transition operators to sample latent|par, for
data generated from logistic regression GPMs. T is the number of
MCMC iterations

n = 400
d=2 d=10
ESS R | ESS R | #0(n®)
MH v1 22 (7) |81 1] 1
MH v2 67 (17) I | 30 (2) mm 1
SMMALA | 457 (212) [D | 48 (5) | T+1
ELL-SS 104 (25) [ | 50 (2) (I 1
HMC v1 1352 (380) D | 2962 (155) [N 3
HMC v2 1566 (342) [0 | 2995 (129) [N 1




Results

Table: SA - Comparison of transition operators to sample par|latent. In
HMC X is the average number of leapfrog steps.

n = 400
d=2 d=10
ESS R | ESS R | #0(m)
MH 2124 (125) [ | 77 (33) (T T
HMC 12556 (661) W | 293 (137) @D | T(A+1)
SMMALA | 10241 (2672) Wl | 47 (17) Wo| 7(d+2)




Results

Table: AA - Comparison of transition operators to sample

par]|

,ancillary for data generated from logistic regression GPMs.

n = 400
d=2 d=10
ESS R | ESS R #0(n%)
MH 512 (177) 0D | 56 (11) D T
HMC 2666 (973) [ | 223 (39) W | T(dx+1)
SMMALA | 6877 (1584) (D | 47 (21) I | T(d+1)




Results

Table: Comparison of different strategies to sample latent, par| in
four UCI data sets modeled using logistic regression GPMs.

Pima Wisconsin SPECT lonosphere
n=768,d=8 | n=683,d=9 | n=80,d =22 | n=2351,d =34

ESS R ESS R ESS R ESS R

AA 34 (4) Wl | 42 (15) Wl | 99 (18) [ | 12 (5) [

ASIS 35 (8) 0l | 47 (11) WU | 215(23) D | 24 (8) iy

KHR | 153 (14) [ | 20 (10) [ | 101 (16) I | 2 (2) ™ |

SA 5(2) W | 73 | 97 (12) [ | 11 (7) -

SURR | 76 (10) [ | 25 (14) W | 84 (14) [ | 9 (4) iy




Conclusions

Conclusions

@ Sampling from the posterior of latent variables can be
efficiently done in a number of ways (scaled HMC, ELL-SS)

@ AA scheme with par sampled using the MH algorithm seems a
good compromise between efficiency and cost

e Sampling efficiency is sometimes less than 1% for the best
sampling strategy

o Fully automated MCMC for GPMs still an open problem
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