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Scope of this work
Gaussian Process models (GPMs) are extensively used in data analysis given their flexible mod-
eling capabilities and interpretability. The fully Bayesian treatment of GP models is analyti-
cally intractable, and therefore it is necessary to resort to approximations. This work focuses on
Markov chain Monte Carlo (MCMC) inference techniques. The hierarchical structure of GPMs
and the large dimensionality of parameter and latent variable spaces pose serious challenges to
the development of efficient MCMC methods for GPMs. The work employs strategies based on
efficient parameterizations and efficient proposal mechanisms and compares them on simulated
and real data on the basis of convergence speed, sampling efficiency, and computational cost.

Gaussian Process Models - GPMs
I GPMs:

par 

latent 

data 

p(par)

p(latent|par) = GP(µ(par),K(par))

p(data|latent)

I GPM - Probit regression example:
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Why MCMC?
I Comparison MCMC vs Maximum a Posteriori (MAP) using EP
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MAP solution does not account for the uncertainty in par! Also:

I Approximate marginal likelihood might be inaccurate

I Quadrature can’t be employed if par is large dimensional

Challenges in employing MCMC for inference in GPMs
Obvious choice: Sufficient Augmentation (SA) scheme - alternate between:

I Drawing from p(latent|par,data)

I Drawing from p(par|latent)
bad idea!
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I Need to employ Metropolis within Gibbs steps - waste of computations when rejecting

I Updates of par cost O(n3)

I par can be large dimensional, e.g., Automatic Relevance Determination (ARD) covariance

I There are n latent variables (as many as the number of observations)

Mitigating coupling effect through reparameterization
Ancillary Augmentation (AA) scheme - reparametrization using GP prior covariance K:

K = LLT ancillary = L−1 latent

I Replace sampling of par with
p(par|ancillary,data)
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Other strategies:

I SURR - Surrogate method in Murray and Adams (2010): reparameterization using cleverly
constructed auxiliary variables

I KHR - Joint sampler by Knorr-Held and Rue (2002):
propose new par′ and latent′|par′,data and then jointly Accept/Reject

I ASIS - Interweave AA and SA as in Yu and Meng (2011)

Transition operators for latent variables
I Scaled Metropolis-Hastings (MH) proposals - Neal (1999) - draw z ∼ N (0,K)

– MH v1:
latent′ = latent + α z

– MH v2:
latent′ =

√
1− α2 latent + α z

I Scaled Hybrid Monte Carlo (HMC) with mass matrix M .

Negative Hessian of the log-posterior is K−1 + ∆(f), with ∆ diagonal.

– HMC v1 - Christensen et al. (2005)

M = K−1 + ∆(0)

– HMC v2 - proposed in this work
M = K−1

Both are conveniently implemented by deriving HMC specifying M−1

I Manifold MCMC - Girolami and Calderhead (2011)

Simplified Manifold MALA (SMMALA) gradient and curvature information

I Elliptical Slice Sampling (ELL-SS) (Murray et al. 2010) is an adaptation of slice sampling to
sample latent variables in GPMs

Transition operators for parameters par

I Metropolis-Hastings (MH) random walk

I Hybrid Monte Carlo (HMC) gradient information

I Simplified Manifold MALA (SMMALA) gradient and curvature information

Results
I Models employ a radial basis function ARD covariance

I Convergence speed measured using R̂ statistics. To visualize convergence between 1000
and 20000 iterations

< 1.1 < < 1.3 < < 2 <

I Efficiency measured through (the minimum across variables) Effective Sample Size (ESS)

Table 1: Comparison of transition operators to sample latent|par, data for data generated from logistic regression GPMs.
T is the number of MCMC iterations

n = 400
d = 2 d = 10

ESS R̂ ESS R̂ #O(n3)

MH v1 22 (7) 8 (1) 1
MH v2 67 (17) 30 (2) 1
SMMALA 457 (212) 48 (5) T + 1
ELL-SS 104 (25) 50 (2) 1
HMC v1 1352 (380) 2962 (155) 3
HMC v2 1566 (342) 2995 (129) 1

Table 2: SA - Comparison of transition operators to sample par|latent. In HMC λ̄ is the average number of leapfrog
steps.

n = 400
d = 2 d = 10

ESS R̂ ESS R̂ #O(n3)

MH 2124 (125) 77 (33) T
HMC 12556 (661) 293 (137) T (λ̄+ 1)
SMMALA 10241 (2672) 47 (17) T (d+ 2)

Table 3: AA - Comparison of transition operators to sample par|data, ancillary for data generated from logistic regres-
sion GPMs.

n = 400
d = 2 d = 10

ESS R̂ ESS R̂ #O(n3)

MH 512 (177) 56 (11) T
HMC 2666 (973) 223 (39) T (dλ̄+ 1)
SMMALA 6877 (1584) 47 (21) T (d+ 1)

Table 4: Comparison of different strategies to sample latent, par|data in four UCI data sets modeled using logistic
regression GPMs.

Pima Wisconsin SPECT Ionosphere
n = 768, d = 8 n = 683, d = 9 n = 80, d = 22 n = 351, d = 34

ESS R̂ ESS R̂ ESS R̂ ESS R̂

AA 34 (4) 42 (15) 99 (18) 12 (5)
ASIS 35 (8) 47 (11) 215 (23) 24 (8)
KHR 153 (14) 20 (10) 101 (16) 2 (2)
SA 5 (2) 7 (3) 97 (12) 11 (7)
SURR 76 (10) 25 (14) 84 (14) 9 (4)

Conclusions
I Sampling from the posterior of latent variables can be efficiently done in a number of ways

(scaled HMC, ELL-SS)

I AA scheme with par sampled using the MH algorithm seems a good compromise between
efficiency and cost

I Sampling efficiency is sometimes less than 1% for the best sampling strategy

I Fully automated MCMC for GPMs still an open problem
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