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Gaussian Processes
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Bayesian Inference

Inputs = X Labels = y

K = K (X , par)

p(par) p(par|y)

p(par|y) = p(y|par)p(par)∫
p(y|par)p(par)dpar
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Markov chain Monte Carlo - Random walk example

Acceptance probability : min
(
1,

p(y|par′)p(par′)
p(y|par)p(par)

)

Metropolis et al., JoCP, 1953 - Hastings, Biometrika, 1970
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Marginal likelihood

Gaussian likelihood case

log[p(y|par)] = −1
2
log |K | − 1

2
yTK−1y + const.

where K = K (X , par) is an n × n dense matrix!
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Should we care about inference of covariance parameters?
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Abstract

Gaussian process (GP) models form a core part of probabilistic machine learning. Con-
siderable research e↵ort has been made into attacking three issues with GP models: how
to compute e�ciently when the number of data is large; how to approximate the posterior
when the likelihood is not Gaussian and how to estimate covariance function parameter
posteriors. This paper simultaneously addresses these, using a variational approximation
to the posterior which is sparse in support of the function but otherwise free-form. The
result is a Hybrid Monte-Carlo sampling scheme which allows for a non-Gaussian approx-
imation over the function values and covariance parameters simultaneously, with e�cient
computations based on inducing-point sparse GPs. Code to replicate each experiment in
this paper will be available shortly.

1. Introduction

Gaussian process models are attractive for machine learning because of their flexible non-
parametric nature. By combining a GP prior with di↵erent likelihoods, a multitude of
machine learning tasks can be tackled in a probabilistic fashion [1]. There are three things
to consider when using a GP model: approximation of the posterior function (especially if
the likelihood is non-Gaussian), computation, storage and inversion of the covariance ma-
trix, which scales poorly in the number of data; and estimation (or marginalization) of the
covariance function parameters. A multitude of approximation schemes have been proposed
for e�cient computation when the number of data is large. Early strategies were based on
retaining a sub-set of the data [2, 3]. Snelson and Ghahramani [4] introduced an inducing
point approach, where the model is augmented with additional variables, and Titsias [5]
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Pseudo-Marginal Bayesian Inference
for Gaussian Processes

Maurizio Filippone and Mark Girolami

Abstract—The main challenges that arise when adopting Gaussian process priors in probabilistic modeling are how to carry out exact

Bayesian inference and how to account for uncertainty on model parameters when making model-based predictions on out-of-sample
data. Using probit regression as an illustrative working example, this paper presents a general and effective methodology based on the

pseudo-marginal approach to Markov chain Monte Carlo that efficiently addresses both of these issues. The results presented in this
paper show improvements over existing sampling methods to simulate from the posterior distribution over the parameters defining the

covariance function of the Gaussian Process prior. This is particularly important as it offers a powerful tool to carry out full Bayesian
inference of Gaussian Process based hierarchic statistical models in general. The results also demonstrate that Monte Carlo based

integration of all model parameters is actually feasible in this class of models providing a superior quantification of uncertainty in
predictions. Extensive comparisons with respect to state-of-the-art probabilistic classifiers confirm this assertion.

Index Terms—Hierarchic Bayesian models, Gaussian processes, Markov chain Monte Carlo, pseudo-marginal Monte Carlo, Kernel meth-
ods, approximate Bayesian inference

Ç

1 INTRODUCTION

NON-PARAMETRIC or kernel based models represent a
successful class of statistical modelling and prediction

methods. To focus ideas throughout the paper we employ
the working example of predictive classification problems;
the methodology presented, however, is applicable to all
hierarchic Bayesian models in general and those employing
Gaussian process (GP) priors in particular. Important exam-
ples of kernel-based classifiers are the support vector
machine (SVM) [1], [2], the relevance vector machine (RVM)
[3], [4], and the Gaussian process classifier [5]. Although
these classifiers are based on different modeling assump-
tions and paradigms of statistical inference, they are charac-
terized by a kernel function or covariance operator that
allows one to build nonlinear classifiers able to tackle chal-
lenging problems [6], [7], [8], [9], [10], [11].

In order to allow these classifiers to be flexible, it is neces-
sary to parameterize the kernel (or covariance) function by a
set of so called hyper-parameters. After observing a set of
training data, the aim is to estimate or infer such hyper-
parameters. In the case of SVMs point estimates of hyper-
parameters are obtained by optimizing a cross-validation
error. This makes optimization viable only in the case of
very few hyper-parameters, as grid search is usually
employed, and is limited by the available amount of data.
In GP classification, instead, the probabilistic nature of the
model provides a means (usually after approximately

integrating out latent variables) to obtain an approximate
marginal likelihood that offers the possibility to optimize
the hyper-parameters; this is known as type II maximum
likelihood (ML) [5], [12]. Deterministic approximations for
integrating out the latent variables include the Laplace
approximation (LA) [13], expectation propagation (EP) [14],
Variational Bayes [15], integrated nested Laplace approxi-
mations [16], and mean field approximations [17]; see [18],
[19] for extensive assessments of the relative merits of differ-
ent approximation schemes for GP classification.

From a fully Bayesian perspective, in a GP classifier one
would like to be able to (i) infer all model parameters and
latent variables from data and (ii) integrate out latent varia-
bles and hyper-parameters with respect to their posterior
distribution when making predictions accounting for their
uncertainty; this in particular, would effectively make the
classifier parameter free. To date, the literature lacks a sys-
tematic way to efficiently tackle both of these questions.
The main limitations are due the fact that it is not possible
to obtain any of the quantities needed in the inference
in closed form because of analytical intractability. This
requires the use of some form of approximation, and deter-
ministic approximations have been proposed to integrate
out latent variables only; in order to integrate out the
hyper-parameters most of the approaches propose quadra-
ture methods [16], [20], that can only be employed in the
case of a small number of hyper-parameters.

Recently, there have been a few attempts to carry out
inference using stochastic approximations based on Markov
chain Monte Carlo (MCMC) methods [21], [22], [23], the
idea being to leverage asymptotic guarantees of conver-
gence of Monte Carlo estimates to the true values. Unfortu-
nately, employing MCMC methods for inferring latent
variables and hyper-parameters is extremely challenging,
and state-of-the-art methods for doing so are still inefficient
and difficult to use in practice.
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PROBABILISTIC PREDICTION OF NEUROLOGICAL DISORDERS
WITH A STATISTICAL ASSESSMENT OF NEUROIMAGING DATA

MODALITIES

BY M. FILIPPONE, A. F. MARQUAND1, C. R. V. BLAIN, S. C. R. WILLIAMS,
J. MOURÃO-MIRANDA2 AND M. GIROLAMI3

University of Glasgow, King’s College London, King’s College London, King’s
College London, King’s College London and University College London

For many neurological disorders, prediction of disease state is an im-
portant clinical aim. Neuroimaging provides detailed information about brain
structure and function from which such predictions may be statistically de-
rived. A multinomial logit model with Gaussian process priors is proposed
to: (i) predict disease state based on whole-brain neuroimaging data and
(ii) analyze the relative informativeness of different image modalities and
brain regions. Advanced Markov chain Monte Carlo methods are employed
to perform posterior inference over the model. This paper reports a statistical
assessment of multiple neuroimaging modalities applied to the discrimination
of three Parkinsonian neurological disorders from one another and healthy
controls, showing promising predictive performance of disease states when
compared to nonprobabilistic classifiers based on multiple modalities. The
statistical analysis also quantifies the relative importance of different neu-
roimaging measures and brain regions in discriminating between these dis-
eases and suggests that for prediction there is little benefit in acquiring mul-
tiple neuroimaging sequences. Finally, the predictive capability of different
brain regions is found to be in accordance with the regional pathology of the
diseases as reported in the clinical literature.

1. Introduction. For many neurological and psychiatric disorders, making
a definitive diagnosis and predicting clinical outcome are complex and difficult
problems. Difficulties arise due to many factors, including overlapping symptom
profiles, comorbidities in clinical populations and individual variation in disease
phenotype or disease course. In addition, for many neurological disorders the di-
agnosis can only be confirmed via analysis of brain tissue post-mortem. Thus,
technological advances that improve the efficiency or accuracy of clinical assess-

Received October 2011; revised April 2012.
1Supported by the KCL Centre of Excellence in Medical Engineering, funded by the Wellcome

Trust and EPSRC under Grant WT088641/Z/09/Z.
2Supported by the Wellcome Trust under Grant WT086565/Z/08/Z.
3Supported by the EPSRC Grants EP/E052029/1 and EP/H024875/1.
Key words and phrases. Multi-modality multinomial logit model, Gaussian process, hierarchical

model, high-dimensional data, Markov chain Monte Carlo, Parkinsonian diseases, prediction of dis-
ease state.
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Gradient ascent

par′ = par +
α

2
∇par log[p(y|par)p(par)]
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Stochastic Gradient ascent

E
{
∇̃par log[p(y|par)]

}
= ∇par log[p(y|par)]
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Robbins and Monro, AoMS, 1951
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Stochastic Gradient ascent

par′ = par +
αt

2
∇̃par log[p(y|par)p(par)] αt → 0

Robbins and Monro, AoMS, 1951
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Stochastic Gradient Langevin Dynamics (SGLD) algorithm

par′ = par +
αt

2
∇̃par log[p(y|par)p(par)] + ηt ηt ∼ N (0, αt)

Welling and Teh, ICML, 2011
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Stochastic Gradients in SGLD

Traditionally, in SGLD stochastic gradients

∇̃par log[p(y|par)p(par)]

are computed based on mini-batches of data
In GPs the likelihood DOES NOT factorize
What can we do?
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Stochastic Gradients in GP regression

Marginal likelihood

log[p(y|par)] = −1
2
log |K | − 1

2
yTK−1y + const.

Derivatives wrt par

∂ log[p(y|par)]
∂pari

= −1
2
Tr
(
K−1 ∂K

∂pari

)
+

1
2
yTK−1 ∂K

∂pari
K−1y
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Stochastic Gradients in GP regression

Stochastic estimate of the trace

Tr
(
K−1 ∂K

∂pari

)
= Tr

(
K−1 ∂K

∂pari
E[rrT]

)
= E

[
rTK−1 ∂K

∂pari
r
]

with E[rrT] = I

For example rj drawn from {−1, 1} with p = 1/2

Stochastic gradient

− 1
2Nr

Nr∑
i=1

r(i)
T
K−1 ∂K

∂pari
r(i) +

1
2
yTK−1 ∂K

∂pari
K−1y

Linear systems only!

Filippone and Engler, ICML, 2015
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Stochastic Gradients in GP regression

Stochastic estimate of the trace
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r(i)
T
K−1 ∂K
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1
2
yTK−1 ∂K

∂pari
K−1y

Linear systems only!

Filippone and Engler, ICML, 2015
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Solving linear systems

Linear systems:
Ks = b

Can be solved using conjugate gradient:

s = argmin
x

(
1
2
xTKx− xTb

)
Iterative update s = s0 + δ1 + . . .+ δT

Requires only Kv multiplications! O(n2) time
No need to store K ! O(n) space

Filippone and Engler, ICML, 2015
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The Unbiased LInear System SolvEr - ULISSE

Accelerate the solution of dense linear systems
. . . returning an unbiased estimate of the solution

Basic idea - unbiased estimator for generic sums a+ b:

a

1 � p

p +
b

p

+0
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The Unbiased LInear System SolvEr - ULISSE
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The Unbiased LInear System SolvEr - ULISSE

Full CG solution:

s = s0 + δ1 + . . .+ δl + δl+1 . . .+ δT

ULISSE:

p1

1 � p1

1 � p2

p2

+�l+1

p1

+ �l+2

p1p2

s0 + �1 + . . . + �l

Final solution is an unbiased estimate of s!

Filippone and Engler, ICML, 2015
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Comparison with MCMC - Concrete dataset - n ≈ 1K
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Larger n - Census dataset - n ≈ 23K
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Conclusions and ongoing work

“Noisy” MCMC offers a practical and scalable way to carry out
“exact” Bayesian computations for GPs

Novel adaptation of SGLD when the likelihood does not
factorize
Novel linear solver ULISSE to speed up computations of
stochastic gradients
General likelihoods?
Preconditioners?
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