Preconditioning Kernel Matrices

Kurt Cutajar ${ }^{1}$

John P. Cunningham²

Michael A. Osborne ${ }^{3}$

Maurizio Filippone ${ }^{1}$
${ }^{1}$ EURECOM, Sophia Antipolis, France
${ }^{2}$ Columbia University, New York, US
${ }^{3}$ University of Oxford, Oxford, UK

ICML 2016, New York June $22^{\text {nd }}, 2016$

Kernel Machines

- Operate in a high-dimensional, implicit feature space
- Rely on the construction of an $n \times n$ Gram matrix K
- E.g. RBF : $k\left(x_{i}, x_{j}\right)=\sigma^{2} \exp \left(-\frac{1}{2} d^{2}\right)$
where $d^{2}=\left(x_{i}-x_{j}\right)^{\top} \wedge\left(x_{i}-x_{j}\right)$

Solving Linear Systems

- Involve the solution of linear systems $K \mathbf{z}=\mathbf{v}$
- Cholesky Decomposition
- K must be stored in memory!
- $\mathcal{O}\left(n^{2}\right)$ space and $\mathcal{O}\left(n^{3}\right)$ time - unfeasible for large n

Solving Linear Systems

- Involve the solution of linear systems $K z=\mathbf{v}$
- Cholesky Decomposition
- K must be stored in memory!
- $\mathcal{O}\left(n^{2}\right)$ space and $\mathcal{O}\left(n^{3}\right)$ time - unfeasible for large n
- Conjugate Gradient
- Numerical solution of linear systems
- $\mathcal{O}\left(t n^{2}\right)$ for t CG iterations - in theory $t=n$ (possibly worse!)

Solving Linear Systems

- Preconditioned Conjugate Gradient (henceforth PCG)
- Transforms linear system to be better conditioned, improving convergence
- Yields a new linear system of the form $P^{-1} K \mathbf{z}=P^{-1} \mathbf{v}$
- $\mathcal{O}\left(t n^{2}\right)$ for t PCG iterations - in practice $t \ll n$

CG

PCG

Preconditioning Approaches

- Suppose we want to precondition $K_{\mathbf{y}}=K+\lambda I$
- Our choice of preconditioner, P, should:
- Approximate K_{y} as closely as possible
- Be easy to invert

Preconditioning Approaches

- Suppose we want to precondition $K_{\mathrm{y}}=K+\lambda I$
- Our choice of preconditioner, P, should:
- Approximate K_{y} as closely as possible
- Be easy to invert
- For low-rank preconditioners we employ the Woodbury inversion lemma:

$$
\begin{gathered}
K_{y}=\square+ \\
P^{-1}=\square_{\square}^{-1}-1
\end{gathered}
$$

Preconditioning Approaches

- Suppose we want to precondition $K_{\mathbf{y}}=K+\lambda I$
- Our choice of preconditioner, P, should:
- Approximate K_{y} as closely as possible
- Be easy to invert
- For low-rank preconditioners we employ the Woodbury inversion lemma:

- For other preconditioners we solve inner linear systems once again using CG!

Preconditioning Approaches

Nyström

$$
P=K_{X U} K_{U U}^{-1} K_{U X}+\lambda I \quad \text { where } U \subset X
$$

FITC
PITC
Spectral
Partial SVD

Block Jacobi

$$
K=A \wedge A^{\top} \quad \Rightarrow \quad P=A_{[\cdot, 1: m]} \wedge_{[1: m, 1: m]} A_{[1: m,]}^{\top}+\lambda /
$$

$P=\operatorname{bldiag}(K)+\lambda I$
SKI
$P=W K_{U U} W^{\top}+\lambda I \quad$ where $K_{U U}$ is Kronecker
Regularization

Comparison of Preconditioners vs CG

$\begin{array}{llllll}-3 & -2 & -1 & 0 & 1 & 2\end{array}$
Spectral

$\begin{array}{llllll}-3 & -2 & -1 & 0 & 1 & 2\end{array}$
Regularized

Partial SVD

Power plant Dataset

Block Jacobi PITC

FITC

Spectral

$\begin{array}{llllll}-3 & -2 & -1 & 0 & 1 & 2\end{array}$
Regularized

Protein Dataset

($n=45730, d=9$)

Block Jacobi PITC

$\begin{array}{llllll}-3 & -2 & -1 & 0 & 1 & 2\end{array}$
FITC

$\begin{array}{llllll}-3 & -2 & -1 & 0 & 1 & 2\end{array}$
Regularized

Partial SVD
 SKI

Loss
2

1
-1
-2
Gain

Motivating Example - Gaussian Processes

GP prior

GP regression example

Inference result

- Marginal likelihood

$$
\log [p(\mathrm{y} \mid \text { par })]=-\frac{1}{2} \log \left|K_{\mathbf{y}}\right|-\frac{1}{2} \mathrm{y}^{\mathrm{T}} K_{\mathbf{y}}^{-1} \mathrm{y}+\text { const. }
$$

- Derivatives wrt par

$$
\frac{\partial \log [p(\mathrm{y} \mid \text { par })]}{\partial \operatorname{par}_{i}}=-\frac{1}{2} \operatorname{Tr}\left(K_{\mathbf{y}}^{-1} \frac{\partial K_{\mathbf{y}}}{\partial \operatorname{par}_{i}}\right)+\frac{1}{2} \mathrm{y}^{\mathrm{T}} K_{\mathbf{y}}^{-1} \frac{\partial K_{\mathbf{y}}}{\partial \operatorname{par}_{i}} K_{\mathbf{y}}^{-1} \mathrm{y}
$$

Gaussian Processes - Stochastic Gradients

- Stochastic estimate of the trace - assuming $\mathrm{E}\left[\mathrm{rr}^{\mathrm{T}}\right]=I$, then

$$
\operatorname{Tr}\left(K_{\mathbf{y}}^{-1} \frac{\partial K_{\mathbf{y}}}{\partial \operatorname{par}_{i}}\right)=\operatorname{Tr}\left(K_{\mathbf{y}}^{-1} \frac{\partial K_{\mathbf{y}}}{\partial \operatorname{par}_{i}} \mathrm{E}\left[\mathbf{r r}{ }^{\mathrm{T}}\right]\right)=\mathrm{E}\left[\mathbf{r}^{\mathrm{T}} K_{\mathbf{y}}^{-1} \frac{\partial K_{\mathbf{y}}}{\partial \operatorname{par}_{i}} \mathbf{r}\right]
$$

- Stochastic gradient

$$
-\frac{1}{2 N_{\mathbf{r}}} \sum_{i=1}^{N_{\mathbf{r}}} \mathbf{r}^{(i)^{\mathrm{T}}} K_{\mathbf{y}}^{-1} \frac{\partial K_{\mathbf{y}}}{\partial \operatorname{par}_{i}} \mathbf{r}^{(i)}+\frac{1}{2} \mathrm{y}^{\mathrm{T}} K_{\mathbf{y}}^{-1} \frac{\partial K_{\mathbf{y}}}{\partial \operatorname{par}_{i}} K_{\mathbf{y}}^{-1} \mathrm{y}
$$

Gaussian Processes - Stochastic Gradients

- Stochastic estimate of the trace - assuming $\mathrm{E}\left[\mathrm{rr}^{\mathrm{T}}\right]=I$, then

$$
\operatorname{Tr}\left(K_{\mathbf{y}}^{-1} \frac{\partial K_{\mathbf{y}}}{\partial \operatorname{par}_{i}}\right)=\operatorname{Tr}\left(K_{\mathbf{y}}^{-1} \frac{\partial K_{\mathbf{y}}}{\partial \operatorname{par}_{i}} \mathrm{E}\left[\mathbf{r r}{ }^{\mathrm{T}}\right]\right)=\mathrm{E}\left[\mathbf{r}^{\mathrm{T}} K_{\mathbf{y}}^{-1} \frac{\partial K_{\mathbf{y}}}{\partial \operatorname{par}_{i}} \mathbf{r}\right]
$$

- Stochastic gradient

$$
-\frac{1}{2 N_{\mathbf{r}}} \sum_{i=1}^{N_{\mathbf{r}}} \mathbf{r}^{(i)^{\mathrm{T}}} K_{\mathbf{y}}^{-1} \frac{\partial K_{\mathbf{y}}}{\partial \operatorname{par}_{i}} \mathbf{r}^{(i)}+\frac{1}{2} \mathrm{y}^{\mathrm{T}} K_{\mathbf{y}}^{-1} \frac{\partial K_{\mathbf{y}}}{\partial \operatorname{par}_{i}} K_{\mathbf{y}}^{-1} \mathbf{y}
$$

Linear systems only!

- Stochastic estimate of the trace - assuming $\mathrm{E}\left[\mathbf{r r}^{\mathrm{T}}\right]=I$, then

$$
\operatorname{Tr}\left(K_{\mathbf{y}}^{-1} \frac{\partial K_{\mathbf{y}}}{\partial \operatorname{par}_{i}}\right)=\operatorname{Tr}\left(K_{\mathbf{y}}^{-1} \frac{\partial K_{\mathbf{y}}}{\partial \operatorname{par}_{i}} \mathrm{E}\left[\mathbf{r r}{ }^{\mathrm{T}}\right]\right)=\mathrm{E}\left[\mathbf{r}^{\mathrm{T}} K_{\mathbf{y}}^{-1} \frac{\partial K_{\mathbf{y}}}{\partial \operatorname{par}_{i}} \mathbf{r}\right]
$$

- Stochastic gradient

$$
-\frac{1}{2 N_{\mathbf{r}}} \sum_{i=1}^{N_{\mathbf{r}}} \mathbf{r}^{(i)^{\mathrm{T}}} K_{\mathbf{y}}^{-1} \frac{\partial K_{\mathbf{y}}}{\partial \operatorname{par}_{i}} \mathbf{r}^{(i)}+\frac{1}{2} \mathrm{y}^{\mathrm{T}} K_{\mathbf{y}}^{-1} \frac{\partial K_{\mathbf{y}}}{\partial \operatorname{par}_{i}} K_{\mathbf{y}}^{-1} \mathbf{y}
$$

Linear systems only!

Also applicable to non-Gaussian likelihoods!

Experimental Setup

GP Kernel Parameter Optimization

- Exact gradient-based optimization using Cholesky decomposition (CHOL)
- Stochastic gradient-based optimization (using ADAGRAD)
- Linear systems solved with CG and PCG
- GP Approximations
- Variational learning of inducing variables (VAR)
- Fully Independent Training Conditional (FITC)
- Partially Independent Training Conditional (PITC)

Results - ARD Kernel

Classification
Spam ($n=4061, d=57$)

Regression

Power plant ($n=9568, d=4$)

Protein ($n=45730, d=9$)

$$
\text { — PCG CG } . . . \text { CHOL - - FITC } \ldots . . \text { PITC -.- VAR }
$$

Conclusions

- Contributions
- We provide an extensive discussion of preconditioning
- We incorporate preconditioning in GP models with both Gaussian and non-Gaussian likelihoods
- We carry out exact GP inference at a fraction of the cost

Conclusions

- Contributions
- We provide an extensive discussion of preconditioning
- We incorporate preconditioning in GP models with both Gaussian and non-Gaussian likelihoods
- We carry out exact GP inference at a fraction of the cost
- Ongoing work
- Extending this work to other kernel functions and models
- Implementation on a distributed framework
- Exploiting PCG in the solution of $f(K) \mathbf{z}=\mathbf{v}$

Conclusions

- Contributions
- We provide an extensive discussion of preconditioning
- We incorporate preconditioning in GP models with both Gaussian and non-Gaussian likelihoods
- We carry out exact GP inference at a fraction of the cost
- Ongoing work
- Extending this work to other kernel functions and models
- Implementation on a distributed framework
- Exploiting PCG in the solution of $f(K) \mathbf{z}=\mathbf{v}$

Thank you!

