
Preconditioning Kernel Matrices
K. Cutajar1, M. A. Osborne2, J. P. Cunningham3, M. Filippone1

1 - EURECOM, Sophia Antipolis, France
2 - University of Oxford, Oxford, UK 3 - Columbia University, New York City, USA

Kernel Machines and Solving Linear Systems
▶ Operate in a high-dimensional, implicit feature space;

▶ Rely on the construction of an n× n Gram matrix K;

▶ Popular kernels:

– RBF : k (xi,xj) = σ2 exp
(
− 1

2d
2
)
;

– Matérn : kv= 3
2
(xi,xj) = σ2

(
1 +

√
3d

)
exp

(
−
√
3d

)
;

where d2 = (xi − xj)
⊤
Λ (xi − xj).

▶ Involve the solution of linear systems Kz = v;

▶ Cholesky Decomposition:

– O(n2) space and O(n3) time - unfeasible for large n.

Fig. 1: Kernel machines enable
non-linear separation of data.

▶ Conjugate Gradient (CG):

– Numerical solution of linear systems constructed
using matrix-vector multiplications;

– O(tn2) for t CG iterations - in theory t = n
(possibly worse).

z

z0

Fig. 2: CG

▶ Preconditioned Conjugate Gradient (PCG):

– Transforms linear system to be better conditioned,
improving convergence;

– Yields a new linear system of the form
P−1Kz = P−1v;

– O(tn2) for t PCG iterations - in practice t ≪ n.

z

z0

Fig. 3: Preconditioned CG

Preconditioning Approaches
▶ Suppose we want to precondition Ky = K + λI ;

▶ Our choice of preconditioner should:

– Approximate Ky as closely as possible;

– Be easy to invert.

▶ For low-rank preconditioners we employ the Woodbury inversion lemma:

Ky = P =

P−1 =

▶ For other preconditioners we solve inner linear systems once again using CG!

Formulation Strategy

Nyström P = KXUK
−1
UUKUX + λI where U ⊂ X Woodbury

FITC P = KXUK
−1
UUKUX + diag

(
K −KXUK

−1
UUKUX

)
+ λI Woodbury

PITC P = KXUK
−1
UUKUX + bldiag

(
K −KXUK

−1
UUKUX

)
+ λI Woodbury

Spectral Pij =
σ2

m

∑m
r=1 cos

[
2πs⊤r (xi − xj)

]
+ λIij Woodbury

Partial SVD K = AΛA⊤ ⇒ P = A[·,1:m]Λ[1:m,1:m]A
⊤
[1:m,·] + λI Woodbury

Block Jacobi P = bldiag (K) + λI Block Inverse

SKI P = WKUUW
⊤ + λI where KUU is Kronecker Inner CG

Regularization P = K + δI + λI Inner CG

Preconditioning Kernel Matrices

Concrete Dataset Power plant Dataset Protein Dataset
(n = 1030, d = 8) (n = 9568, d = 4) (n = 45730, d = 9)

-3 -2 -1 0 1 2
log10(l)

-2
-4
-6

lo
g 1

0(
�
)

-3 -2 -1 0 1 2
log10(l)

-2
-4
-6

lo
g 1

0(
�
)

-3 -2 -1 0 1 2
log10(l)

-2
-4
-6

lo
g 1

0(
�
)

log10(nit)

0

5

-3 -2 -1 0 1 2

-2
-4
-6

+ + � + + +

� � � + + +

� � � � + +

Block Jacobi

-3 -2 -1 0 1 2

-2
-4
-6

� � � � � �
� � � � � �
� � � � + �

PITC

-3 -2 -1 0 1 2

-2
-4
-6

� � + � � �
+ � + � � �
+ + + � � �

FITC

-3 -2 -1 0 1 2

-2
-4
-6

� + + � � �
� + + � � �
� + + � � �

Nystrom

-3 -2 -1 0 1 2

-2
-4
-6

+ + + + � �
+ + + + � �
+ + + + � �

Spectral

-3 -2 -1 0 1 2

-2
-4
-6

+ + + � � �
+ + + + � �
+ + + + � �

Randomized SVD

-3 -2 -1 0 1 2

-2
-4
-6

+ + + + + +

+ + + + + +

+ + + + + +

Regularized

-3 -2 -1 0 1 2

-2
-4
-6

+ + + + + +

+ + + + + +

+ + + + + +

SKI

-3 -2 -1 0 1 2

-2
-4
-6

� � + + + +

� � � + + +

� � � + + +

Block Jacobi

-3 -2 -1 0 1 2

-2
-4
-6

� � + � � �
� � + � � �
� � + � � �

PITC

-3 -2 -1 0 1 2

-2
-4
-6

� � + � � �
� � + � � �
� � + � � �

FITC

-3 -2 -1 0 1 2

-2
-4
-6

+ + + � � �
+ + + � � �
+ + + � � �

Nystrom

-3 -2 -1 0 1 2

-2
-4
-6

+ + + � � �
+ + + � � �
+ + + + + �

Spectral

-3 -2 -1 0 1 2

-2
-4
-6

+ + + � � �
+ + + � � �
+ + + � � �

Randomized SVD

-3 -2 -1 0 1 2

-2
-4
-6

+ + + + + +

+ + + + + +

+ + + � + +

Regularized

-3 -2 -1 0 1 2

-2
-4
-6

+ + + + + �
+ + + + + �
+ + + � + +

SKI

-3 -2 -1 0 1 2

-2
-4
-6

� � + + + +

� + � + + +

� + � � + +

Block Jacobi

-3 -2 -1 0 1 2

-2
-4
-6

� � + � � �
� + + � � �
� + + � � +

PITC

-3 -2 -1 0 1 2

-2
-4
-6

� � + � � �
� + + � � �
+ + + � � �

FITC

-3 -2 -1 0 1 2

-2
-4
-6

� � + � � �
� + + � � �
� + + � � �

Nystrom

-3 -2 -1 0 1 2

-2
-4
-6

+ + + + � �
+ + + + � �
+ + + � + �

Spectral

-3 -2 -1 0 1 2

-2
-4
-6

+ � � � � �
+ + � � � �
+ + � � � �

Randomized SVD

-3 -2 -1 0 1 2

-2
-4
-6

Too Expensive!

Regularized

-3 -2 -1 0 1 2

-2
-4
-6

Too Expensive!

SKI

Loss

−2

−1

0

1

2

Gain

Figure 1. Comparison of preconditioners for different settings of kernel parameters. The lengthscale l and the noise variance λ are shown
on the x and y axes respectively. The top figure indicates the number of iterations required to solve the corresponding linear system using
CG, whilst the bottom part of the figure shows the rate of improvement (negative - blue) or degradation (positive - red) achieved by using
PCG to solve the same linear system. Parameters and results are reported in log10. Symbols added to facilitate reading in B/W print.

tioner requires one matrix-vector product, and we add this
to the overall count of such computations. For this precon-
ditioner, we add a diagonal offset δ to the original matrix,
equivalent to two orders of magnitude greater than the noise
of the process. In general, although the complexity of PCG
is indeed no different from that of CG, we emphasize that
experiencing a 2-fold or 5-fold (in some cases even an order
of magnitude) improvement can be very substantial when
plain CG takes very long to converge or when the dataset is
large.

We focus on an isotropic RBF variant of the kernel in eq. 1,
fixing the marginal variance σ2 to one. We vary the length-
scale parameter l and the noise variance λ in log10 scale.
The top part of fig. 1 shows the number of iterations that
the standard CG algorithm takes, where we have capped
the number of iterations to 100,000.

The bottom part of the figure reports the improvement of-
fered by various preconditioners measured as

log10

(
PCG iterations

CG iterations

)
.

It is worth noting that when both CG and PCG fail to con-
verge within the upper bound, the improvement will be
marked as 0, i.e. neither a gain or a loss within the given
bound. The results plotted in fig. 1 indicate that the low-
rank preconditioners (PITC, FITC and Nyström) achieve

significant reductions in the number of iterations for each
dataset, and all approaches work best when the lengthscale
is longer, characterising smoother processes. In contrast,
preconditioning seems to be less effective when the length-
scale is shorter, corresponding to a kernel matrix that is
more sparse. However, for cases yielding positive results,
the improvement is often in the range of an order of mag-
nitude, which can be substantial when a large number of
iterations is required by the CG algorithm.

The results also confirm that, as alluded to in the previous
section, Block Jacobi preconditioning is generally a poor
preconditioner, particularly when the corresponding kernel
matrix is dense. The only minor improvements were ob-
served when CG itself converges quickly, in which case
preconditioning serves very little purpose either way.

The regularization approach with flexible conjugate gradi-
ent does not appear to be effective in any case either, partic-
ularly due to the substantial amount of iterations required
for solving an inner system at every iteration of the PCG
algorithm. This implies that introducing additional small
jitter to the diagonal does not necessarily make the sys-
tem much easier to solve, whilst adding an overly large
offset would negatively impact convergence of the outer al-
gorithm. One could assume that tuning the value of this
parameter could result in slightly better results; however,
preliminary experiments in this regard yielded only minor

Fig. 4: Comparison of preconditioners for different settings of kernel parameters across multiple datasets. Top: Number of
iterations required to solve the corresponding linear system using CG. Bottom: Rate of improvement (blue) or degradation
(red) achieved by using PCG to solve the same linear system.

Motivating Example - Gaussian Processes
▶ Marginal likelihood:

log[p(y|par)] = −1

2
log |Ky| −

1

2
y⊤K−1

y y + const.

▶ Derivatives wrt par:

∂ log[p(y|par)]
∂pari

= −1

2
Tr

(
K−1

y

∂Ky

∂pari

)
+

1

2
y⊤K−1

y

∂Ky

∂pari
K−1

y y

▶ Stochastic estimate of the trace - assuming E[rr⊤] = I , then:

Tr

(
K−1

y

∂Ky

∂pari

)
= Tr

(
K−1

y

∂Ky

∂pari
E[rr⊤]

)
= E

[
r⊤K−1

y

∂Ky

∂pari
r

]
≈ 1

Nr

Nr∑
i=1

r(i)
⊤
K−1

y

∂Ky

∂pari
r(i)

▶ Linear systems only!

▶ Laplace approximation for non-Gaussian likelihoods may be formulated in a similar way!

Experimental Setup and Results
▶ Exact gradient-based optimization using Cholesky decomposition (CHOL);

▶ Stochastic gradient-based optimization using ADAGRAD - using CG and PCG;

▶ GP Approximations:

– Variational learning of inducing variables (VAR);

– Fully Independent Training Conditional (FITC);

– Partially Independent Training Conditional (PITC).

Classification
Spam Dataset (n = 4061, d=57)

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
04

0.
08

0.
12

log10(seconds)

E
rr

or
 R

at
e

−1 0 1 2 3

15
25

35

log10(seconds)

N
eg

at
iv

e
Te

st
 L

og
−

Li
k

EEG Dataset (n = 14979, d=14)

1.0 1.5 2.0 2.5 3.0 3.5

0.
05

0.
15

0.
25

log10(seconds)

E
rr

or
 R

at
e

0 1 2 3 4

20
30

40
50

60

log10(seconds)

N
eg

at
iv

e
Te

st
 L

og
−

Li
k

Regression
Power plant Dataset (n = 9568, d=4)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
18

0.
20

0.
22

log10(seconds)

R
M

S
E

0 1 2 3

−
40

−
20

0

log10(seconds)

N
eg

at
iv

e
Te

st
 L

og
−

Li
k

Protein Dataset (n = 45730, d=9)

1.5 2.0 2.5 3.0 3.5 4.0

0.
60

0.
64

0.
68

0.
72

log10(seconds)

R
M

S
E

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

20
0

30
0

40
0

log10(seconds)

N
eg

at
iv

e
Te

st
 L

og
−

Li
k

PCG CG CHOL FITC PITC VAR

Fig. 5: Error and negative log likelihood on
√
n held out test data over time. Curves are averaged over multiple repetitions.

Conclusions
▶ Our solution:

3 Exact in the limit of iterations;

3 Straightforward to construct and easy to tune;

3 Scalable to large datasets - no need to store K;

3 Competitive with exact Cholesky decomposition;

3 Superior to approximate methods.

▶ Ongoing work:

– Extending this work to other kernel functions and models;

– Implementation on a distributed framework;

– Exploiting PCG in the solution of f(K) z = v.

1

