

Preconditioning Kernel Matrices

K. Cutajar¹, M. A. Osborne², J. P. Cunningham³, M. Filippone¹ 1 - EURECOM, Sophia Antipolis, France 2 - University of Oxford, Oxford, UK 3 - Columbia University, New York City, USA

Kernel Machines and Solving Linear Systems

- Operate in a high-dimensional, implicit feature space;
- ▶ Rely on the construction of an $n \times n$ Gram matrix *K*;
- ► Popular kernels:
 - RBF: $k(\mathbf{x}_i, \mathbf{x}_j) = \sigma^2 \exp\left(-\frac{1}{2}d^2\right);$ - Matérn : $k_{v=\frac{3}{2}}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sigma^{2}(1 + \sqrt{3}d) \exp(-\sqrt{3}d);$ where $d^2 = (\mathbf{x}_i - \mathbf{x}_i)^\top \Lambda (\mathbf{x}_i - \mathbf{x}_i)$.
- Involve the solution of linear systems $K\mathbf{z} = \mathbf{v}$;
- Cholesky Decomposition:
 - $\mathcal{O}(n^2)$ space and $\mathcal{O}(n^3)$ time unfeasible for large *n*.

Fig. 1: Kernel machines enable non-linear separation of data.

Motivating Example - Gaussian Processes

Marginal likelihood:

$$\log[p(\mathbf{y}|\mathbf{par})] = -\frac{1}{2}\log|K_{\mathbf{y}}| - \frac{1}{2}\mathbf{y}^{\top}K_{\mathbf{y}}^{-1}\mathbf{y} + \text{const.}$$

Derivatives wrt par:

$$\frac{\partial \log[p(\mathbf{y}|\mathbf{par})]}{\partial \mathrm{par}_{i}} = -\frac{1}{2} \mathrm{Tr} \left(K_{\mathbf{y}}^{-1} \frac{\partial K_{\mathbf{y}}}{\partial \mathrm{par}_{i}} \right) + \frac{1}{2} \mathbf{y}^{\top} K_{\mathbf{y}}^{-1} \frac{\partial K_{\mathbf{y}}}{\partial \mathrm{par}_{i}} K_{\mathbf{y}}^{-1} \mathbf{y}$$

Stochastic estimate of the trace - assuming $E[\mathbf{rr}^{\top}] = I$, then:

 $\operatorname{Tr}\left(K_{\mathbf{y}}^{-1}\frac{\partial K_{\mathbf{y}}}{\partial \operatorname{par}_{i}}\right) = \operatorname{Tr}\left(K_{\mathbf{y}}^{-1}\frac{\partial K_{\mathbf{y}}}{\partial \operatorname{par}_{i}}\operatorname{E}[\mathbf{r}\mathbf{r}^{\top}]\right) = \operatorname{E}\left[\mathbf{r}^{\top}K_{\mathbf{y}}^{-1}\frac{\partial K_{\mathbf{y}}}{\partial \operatorname{par}_{i}}\mathbf{r}\right] \approx \frac{1}{N_{\mathbf{r}}}\sum_{i=1}^{N_{\mathbf{r}}}\mathbf{r}^{(i)^{\top}}K_{\mathbf{y}}^{-1}\frac{\partial K_{\mathbf{y}}}{\partial \operatorname{par}_{i}}\mathbf{r}^{(i)^{\top}}$

- Conjugate Gradient (CG):
 - Numerical solution of linear systems constructed using matrix-vector multiplications;
 - $\mathcal{O}(tn^2)$ for *t* CG iterations in theory t = n(possibly worse).

- Preconditioned Conjugate Gradient (PCG):
 - Transforms linear system to be better conditioned, improving convergence;
 - Yields a new linear system of the form $P^{-1}K\mathbf{z} = P^{-1}\mathbf{v};$
 - $\mathcal{O}(tn^2)$ for *t* PCG iterations in practice $t \ll n$.

Fig. 3: Preconditioned CG

Preconditioning Approaches

- Suppose we want to precondition $K_y = K + \lambda I$;
- ► Our choice of preconditioner should:
 - Approximate $K_{\mathbf{v}}$ as closely as possible;
 - Be easy to invert.
- ► For low-rank preconditioners we employ the Woodbury inversion lemma:

- ► Linear systems only!
- Laplace approximation for non-Gaussian likelihoods may be formulated in a similar way!

Experimental Setup and Results

- Exact gradient-based optimization using Cholesky decomposition (CHOL);
- Stochastic gradient-based optimization using ADAGRAD using CG and PCG;
- ► GP Approximations:
 - Variational learning of inducing variables (VAR);
 - Fully Independent Training Conditional (FITC);
 - Partially Independent Training Conditional (PITC).

Classification **Spam Dataset** (*n* = 4061, *d*=57)

► For other preconditioners we solve inner linear systems once again using CG!

	Formulation	Strategy
Nyström	$P = K_{XU} K_{UU}^{-1} K_{UX} + \lambda I \qquad \text{where } U \subset X$	Woodbury
FITC	$P = K_{XU} K_{UU}^{-1} K_{UX} + \operatorname{diag} \left(K - K_{XU} K_{UU}^{-1} K_{UX} \right) + \lambda I$	Woodbury
PITC	$P = K_{XU} K_{UU}^{-1} K_{UX} + \text{bldiag} \left(K - K_{XU} K_{UU}^{-1} K_{UX} \right) + \lambda I$	Woodbury
Spectral	$P_{ij} = \frac{\sigma^2}{m} \sum_{r=1}^{m} \cos \left[2\pi \mathbf{s}_r^{\top} \left(\mathbf{x}_i - \mathbf{x}_j \right) \right] + \lambda I_{ij}$	Woodbury
Partial SVD	$K = A\Lambda A^{\top} \Rightarrow P = A_{[\cdot,1:m]}\Lambda_{[1:m,1:m]}A_{[1:m,\cdot]}^{\top} + \lambda I$	Woodbury
Block Jacobi	$P = bldiag\left(K\right) + \lambda I$	Block Inverse
SKI	$P = W K_{UU} W^{\top} + \lambda I$ where K_{UU} is Kronecker	Inner CG
Regularization	$P = K + \delta I + \lambda I$	Inner CG
Concrete Dataset $(n = 1030, d = 8)$	Power plant Dataset $(n = 9568, d = 4)$ Protein Dataset $(n = 45730, d = 9)$ $\bigcirc -6$	$\log_{10}(n_{\rm it})$

FITC

 $-2 \circ \circ + -$

 $\log_{10}(l)$

Fig. 4: Comparison of preconditioners for different settings of kernel parameters across multiple datasets. Top: Number of iterations required to solve the corresponding linear system using CG. Bottom: Rate of improvement (blue) or degradation (red) achieved by using PCG to solve the same linear system.

Fig. 5: Error and negative log likelihood on \sqrt{n} held out test data over time. Curves are averaged over multiple repetitions.

Conclusions

- ► Our solution:
 - Exact in the limit of iterations;
 - ✓ Straightforward to construct and easy to tune;
 - ✓ Scalable to large datasets no need to store *K*;
 - Competitive with exact Cholesky decomposition;
 - ✓ Superior to approximate methods.
- Ongoing work:

-1

-2

- Extending this work to other kernel functions and models;
- Implementation on a distributed framework;
- Exploiting PCG in the solution of $f(K) \mathbf{z} = \mathbf{v}$.