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Scope of this work
In clinical neuroimaging applications where subjects belong to one
of multiple classes of disease states and multiple imaging sources
are available, the aim is to achieve accurate classification while as-
sessing the importance of the sources in the classification task.
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This work proposes the use of fully Bayesian multiple-class
multiple-kernel learning based on Gaussian Processes, as it offers
flexible classification capabilities and a sound quantification of un-
certainty in parameter estimates and predictions. The exact in-
ference of parameters and accurate quantification of uncertainty
in Gaussian Process models, however, poses a computationally
challenging problem. This paper proposes the application of ad-
vanced inference techniques based on Markov chain Monte Carlo
and unbiased estimates of the marginal likelihood, and demon-
strates their ability to accurately and efficiently carry out inference
in their application on synthetic data and real clinical neuroimag-
ing data. The results in this paper are important as they further
work in the direction of achieving computationally feasible fully
Bayesian models for a wide range of real world applications.

Data
I Structural magnetic resonance imaging (MRI) data

– T1-weighted structural imaging

– Preprocessing using the SPM8 software package
(www.fil.ion.ucl.ac.uk/spm)

Parkinsonian data

I Segmentation parcellating anatomically into six target re-
gions of interest (brainstem, cerebellum, caudate, middle oc-
cipital gyrus, putamen, and one for all other brain regions)

I 62 subjects (healthy controls + patients with one of three
akinetic-rigid neurological disorders)

– 14 subjects healthy controls

– 18 subjects multiple system atrophy (MSA)

– 16 subjects progressive supranuclear palsy (PSP)

– 14 subjects idiopathic Parkinson’s disease (IPD)

ADHD and ASD data

I 77 adolescent subjects (aged 10-18)

– 29 subjects healthy controls

– 29 subjects with either attention deficit/hyperactivity
disorder (ADHD)

– 19 subjects with autism spectrum disorder (ASD)

Methods
Classification approach

I Multiple class

I Kernel-based - pairwise similarity between subjects

I Multiple kernel - multiple input data

I Probabilistic - we need sound quantification of uncertainty

Multi-Class Multiple Kernel classifier using Gaussian Processes

Classification Model
Data

I {(x1,y1), · · · , (xn,yn)} set of n input/class pairs

I yi = (y1i , . . . , y
C
i )T, with yci = 1 if xi belongs to cth class

Model

I Class labels conditionally independent given a set of class
specific latent variables
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I Probability πc
i that instance i belongs to class c is given by

πc
i =

exp(f ci )∑
s exp(fsi )

I Multinomial likelihood with probabilities πc
i .

Latent Variables

I Class-specific sets of latent variables are assigned Gaussian
Process (GP) priors N (f c|0,Kc).

I Assume that d input sources are given, from which d covari-
ance matrices Sh can be derived. Define

Kc =
d∑

h=1

θchSh

θ’s can be used to asses importance of input sources in deter-
mining classes.

Inference and predictions
I Predictions of label y∗ for new input x∗

p(y∗|y) =

∫
p(y∗|f∗)p(f∗|f ,θ)p(f ,θ|y)df∗dfdθ

I Approximate integral using Markov chain Monte Carlo

– Draw N samples from p(f ,θ|y).

– Approximate the predictive distribution by

p(y∗|y) ' 1

N

N∑
i=1

∫
p(y∗|f∗)p(f∗|f (i),θ(i))df∗

I Asymptotically exact

Challenges

I Not possible to draw samples from p(f ,θ|y) directly

I Need to resort to Gibbs sampling types of schemes

I Sampling θ|f makes the MCMC approach very inefficient
(sampling f |θ,y is relatively easy instead)

Proposal

I Sample θ|y using the Metropolis-Hastings algorithm:

– initialize the algorithm randomly from θ

– propose a new set of parameters θ′ from π(θ′|θ)

– accept proposal with probability

min

{
1,
p(y|θ′)p(θ′)π(θ|θ′)
p(y|θ)p(θ)π(θ′|θ)

}
I . . . but p(y|θ) is analytically intractable!

I Nevertheless, we can get around this problem by using just
an unbiased estimate p̃(y|θ) of p(y|θ)

min

{
1,
p̃(y|θ′)p(θ′)π(θ|θ′)
p̃(y|θ)p(θ)π(θ′|θ)

}
I This will yield samples from the correct p(θ|y)

I We propose to estimate an p̃(y|θ) using importance sam-
pling

p̃(y|θ) ' 1

Nimp

Nimp∑
i=1

p(y|f (i))p(f (i)|θ)

q(f (i)|θ)

whereNimp samples are drawn from a Gaussian distribution
q(f |θ) approximating p(f |y,θ).

I Variance of the estimator affects MCMC efficiency

Laplace Approximation
Gaussian distribution q(f |θ) approximating p(f |y,θ)

I Define Ψ = log[p(f |y,θ)]

I Locate the mode of Ψ using Newton’s iterations

fnew = f − (∇f∇fΨ(f))−1∇fΨ(f)

I Match the covariance of the target and the approximating
distributions at the mode of Ψ

Implementation storing at most n× n matrices

I Gradient ∇fΨ(f) = −K−1f + y − π, and negative Hessian

−∇f∇fΨ(f) = K−1 + diag(π)−ΠΠT

= + −

where Π is obtained by stacking by row the matrices diag(πc)

Drawing from q(f |θ)
Implementation requiring the storage of n× n matrices only

I Sequentially draw latent variables pertaining to each class

f1 f2|f1 f3|f2, f1 . . . fC |fC−1, . . . , f1

I Define precision of q(f |θ) as Λ = K−1 + diag(π)−ΠΠT

I Inverse covariance of f1 is

Λ[1,1] − Λ[1,2:C]Λ
−1
[2:C,2:C]Λ[2:C,1] (1)

= −

Λ[2:C,2:C] can be inverted storing at most n× n matrices

I Mean of fr|fr−1, . . . , f1 is

f̂r − Λ−1[r,r]Λ[r,1:(r−1)](f
[1:(r−1)] − f̂ [1:(r−1)]) (2)

Synthetic data
I 150 data divided in three classes

I Two kernels: one RBF and one linear

I θ11 = θ21 = θ32 = 2 and 0 for all others

Latent functions Probabilities π Posterior over parameters θ’s
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Results
Posterior distributions

Parkinsonian Data ADHD and ASD data
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Sampling Efficiency and Convergence

Parkinsonian data

Nimp
ESS R̂ % Acc

Min (σ) Max (σ) @103 @2 · 103 @104 Rate
450 36.4(11.0) 118.4(13.0) 1.8 1.14 1.07 10.0
100 25.0(14.7) 106.4(42.0) 2.42 1.62 1.40 8.1
10 11.06(6.0) 51.3(14.3) 1.89 1.60 1.24 7.3

ADHD and ASD data

Method Nimp
ESS R̂ % Acc

Min (σ) Max (σ) @103 @104 Rate

PM
450 436(111) 677(130) 1.15 1.00 30.9
100 378(79) 725(141) 1.05 1.00 31.0
10 410(56) 637(111) 1.08 1.00 29.6

AA – 134(16) 166(13) 1.09 1.01 33.2

Prediction Accuracy ADHD and ASD data

Predicted
ADHD HC ASD

Actual
ADHD 22 6 1

HC 9 18 2
ASD 2 1 16

Balanced accuracy of 74.0% higher than
68.2% obtained by multiple-class GP
using the Laplace Approximation

Conclusions and ongoing work
I We proposed the use of Gaussian Process classification for

multiple-class multiple-kernel (MC-MKL) learning for neu-
roimaging data where:

– Quantification of uncertainty in predictions is of pri-
mary interest

– Assessment of importance of different sources of infor-
mation is key to design future experiments

I We demonstrated that exact quantification of uncertainty in
parameter estimates leads to better predictions compared to
approximate methods

I We proposed a practical way to carry out exact quantifica-
tion of uncertainty based on advanced Markov chain Monte
Carlo methods

I A large variance for p̃(y|θ) can severely reduce the efficiency
of the proposed method

I We are studying alternatives to importance sampling and to
the Laplace Approximation to reduce the variance of p̃(y|θ)
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