On the Fully Bayesian Treatment of Latent Gaussian Models using Stochastic Simulations

Maurizio Filippone

School of Computing Science University of Glasgow maurizio.filippone@glasgow.ac.uk

May 30th, 2012

Latent Gaussian Models Inference in Latent Gaussian Models using MCMC

Outline of the talk

(2) Inference in Latent Gaussian Models using MCMC

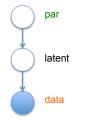
3 An application to neuroimaging data

Latent Gaussian Models - LGMs

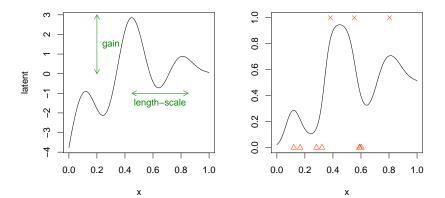
• Class of hierarchical models

 $p(\text{data}|\text{latent}) \quad p(\text{latent}|\text{par}) \quad p(\text{par})$

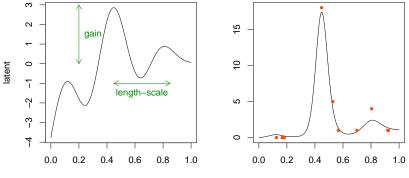
• $p(|atent|par) = \mathcal{N}(|atent|\mu(par), K(par))$



LGM - Logistic regression example



LGM - Log-Gaussian Cox example



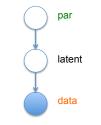
х

Inference and predictions

• **Ideally** - predictions for new data¹ $p(data_*|data)$:

 $\int p(\text{data}_*|\text{latent}, \text{par})p(\text{latent}, \text{par}|\text{data}) d\text{latent} d\text{par}$

• requires the posterior distribution p(latent, par|data)



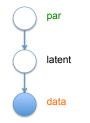
¹here latent comprises also latent*

Inference and predictions

• Posterior:

 $p(\text{latent}, \text{par}|\text{data}) \propto p(\text{data}|\text{latent})p(\text{latent}|\text{par})p(\text{par})$

• usually analytically intractable



Stochastic approximations - Monte Carlo integration

• Predictions for new data $p(data_*|data)$ is an expectation

 $\int p(\text{data}_*|\text{latent}, \text{par})p(\text{latent}, \text{par}|\text{data}) d\text{latent} d\text{par}$

• Monte Carlo estimation:

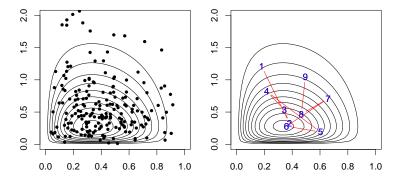
$$\mathbb{E}[f(x)] = \int f(x)p(x)dx \simeq \frac{1}{N}\sum_{i=1}^{N}f(x_i)$$

with x_i drawn from p(x)

- good news: asymptotically correct
- bad news: the variance of $\operatorname{E}[f(x)] \to 0$ in O(1/N)

Stochastic approximations - MCMC

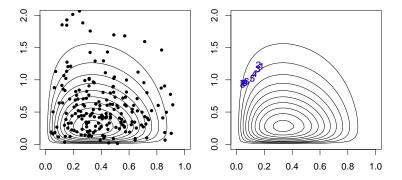
• Explore the parameter space according to the density



Often it is not possible to draw samples directly - need to set up a Markov chain

Stochastic approximations - MCMC

• Explore the parameter space according to the density



... sometimes things can go wrong - need for efficient proposal mechanisms

Complexity of LGMs

• updates of par cost $O(n^3)$ operations

$$\log |K| \qquad K^{-1}$$

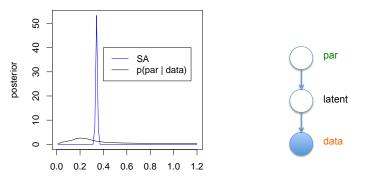
unless particular structures are assumed

Approximate inference

- MCMC is usually considered slow/awkward to apply to LGMs
- approximate² $p(|atent|par, data) \simeq q(|atent|par, data)$
 - maximizing approximate $\hat{p}(\text{data}|\text{par})$ (using q) wrt par
 - $\bullet\,$ numerically integrate out par by quadrature or MCMC
- usually fast but:
 - still in $O(n^3)$
 - $\bullet\,$ we would like to include the uncertainty on par
 - we might not be happy with the approximation q
 - $\bullet\,$ quadrature can't be employed if par is large dimensional

Gibbs sampling p(latent, par|data)

- Why is MCMC for LGMs difficult?
- obvious choice (aka Sufficient Augmentation (SA) scheme):
 - p(|atent|par, data) (can be efficiently sampled)
 - p(par|latent) (bad idea see figure)



Gibbs sampling p(latent, par|data)

• Ancillary Augmentation (AA) scheme - reparametrization:

ancillary
$$= L^{-1}$$
 latent $K = LL^{T}$

• p(|atent|par, data) (can be efficiently sampled) • p(par|ancillary, data) (larger marginal posterior variance) 50 6 ancillary par SA posterior 8 AA p(par | data) 20 5 data 0 0.0 0.2 0.6 0.8 1.0 1.2 4

Other strategies

- Joint sampler by Knorr-Held and Rue (2002): propose par'|latent and latent'|par', data and then jointly Accept/Reject
- Interweave AA and SA (ASIS, Yu and Meng 2011)

Some results

- \bullet par sampled using MH
- latent sampled using Elliptical Slice Sampling (Murray et al. 2010)

Sampler	min ESS	Ŕ
ASIS	2.3%	1.01
SA	0.7%	1.75
AA	2.0%	1.01
KHR	0.9%	1.04

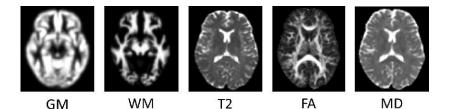
Table: Logistic regression - n = 100, par $\in \mathbb{R}^2$

Take-home message

- fastest convergence and highest sample independence wrt computations: AA scheme with par sampled using the Metropolis-Hastings algorithm
- clever and complicated proposal are expensive and don't seem to pay off

Parkinson syndromes data

- 62 subjects
- Early stage prediction of development of
 - Idiopathic Parkinson's Disease (IPD)
 - Multiple System Atrophy (MSA)
 - Progressive Supranuclear Palsy (PSP)
- Given neuroimages



LGM based multiclass classification with multiple sources

• latent variables $f_c(x)$ with GP prior with covariance

$$\operatorname{cov}(f_c(x_1), f_c(x_2)) = \sum_{s=1}^{q} w_{cs} C_s(x_1, x_2)$$

Multinomial likelihood

$$p(\text{disease} = c | \text{latent, sources}) = \frac{\exp(f_c(x))}{\sum_{r=1}^{m} \exp(f_r(x))}$$

this problem is aka Multiple Kernel Learning

Parkinson syndromes data - multi source

		C1: PSP	C2: IPD	C3: HC	C4: MSA
		2-	2-	2.	2
		1.8 T T	1.8	1.8	1.8
		1.6	1.6	1.6	1.6
Method	Accuracy	±1.4 ₩ 1.2	1.4	1.4	1.4
GP classifier	0.598		1	1.1.1	
SimpleMKL	0.418	1.01111.011	0.8	0.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	╡╍╸ <mark>╽</mark> ┟║┟
		- 0.6-	0.6-	0.6-	0.6-
		0.4	●▲ HHHH		104FUHUH
			0.2		
		0 1 2 3 4 5 Data Source	0 1 2 3 4 5 Data Source	1 2 3 4 5 Data Source	0 1 2 3 4 5 Data Source

Parkinson syndromes data

Analysis of brain regions

- for this analysis we used only the GM data source
- we used an anatomical template as in Shattuck et al. 2008 to parcellate the GM images into:
 - brainstem
 - bilateral cerebellum
 - bilateral caudate
 - bilateral middle occipital gyrus
 - bilateral putamen
 - all other regions

Parkinson syndromes data - multi region

		C1: PSP	C2: IPD	C3: HC	C4: MSA
		2	ĪΤ	2	3 2.5
Method	Accuracy	1.4 1.4 B 1.2 1.2	111717	14	2.
GP classifier	0.614		1	1.	1.5
SimpleMKL	0.229		▫¦;;;;;;;;	0.8	
			«· - F F - F - F		

123456

Region

123456

Region

123456

Region

123456

Region

Conclusions and ongoing work

The fully Bayesian treatment of LGMs using MCMC is still an open question but recent advances in the field allow to tackle small to moderately large (up to a thousand) inference problems in reasonable time

References

[1] M. Filippone, A.F. Marquand, C.R.V. Blain, S.C.R. Williams, J. Mourão-Miranda, and M. Girolami. Probabilistic prediction of neurological disorders with a statistical assessment of neuroimaging data modalities. *Annals of Applied Statistics. To appear.*

[2] M. Filippone, M. Zhong, and M. Girolami. On the fully Bayesian treatment of latent Gaussian models using stochastic simulations. Technical Report TR-2012-329, School of Computing Science, University of Glasgow, February 2012.

Thank you!

Questions?

æ

<ロト <部ト < 注ト < 注ト