
Latent Gaussian Models
Inference in Latent Gaussian Models using MCMC

An application to neuroimaging data

On the Fully Bayesian Treatment of Latent
Gaussian Models using Stochastic Simulations

Maurizio Filippone

School of Computing Science
University of Glasgow

maurizio.filippone@glasgow.ac.uk

May 30th, 2012



Latent Gaussian Models
Inference in Latent Gaussian Models using MCMC

An application to neuroimaging data

Outline of the talk

1 Latent Gaussian Models

2 Inference in Latent Gaussian Models using MCMC

3 An application to neuroimaging data



Latent Gaussian Models
Inference in Latent Gaussian Models using MCMC

An application to neuroimaging data

Latent Gaussian Models - LGMs

Class of hierarchical models

p(data|latent) p(latent|par) p(par)

p(latent|par) = N (latent|µ(par),K (par))

par 

latent 

data 
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LGM - Logistic regression example
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LGM - Log-Gaussian Cox example
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Inference and predictions

Ideally - predictions for new data1 p(data∗|data):∫
p(data∗|latent,par)p(latent, par|data) d latent dpar

requires the posterior distribution p(latent, par|data)

par 

latent 

data 

1here latent comprises also latent∗



Latent Gaussian Models
Inference in Latent Gaussian Models using MCMC

An application to neuroimaging data

Inference and predictions

Posterior:

p(latent, par|data) ∝ p(data|latent)p(latent|par)p(par)

usually analytically intractable

par 

latent 

data 
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Stochastic approximations - Monte Carlo integration

Predictions for new data p(data∗|data) is an expectation∫
p(data∗|latent,par)p(latent, par|data) d latent dpar

Monte Carlo estimation:

E[f (x)] =

∫
f (x)p(x)dx ' 1

N

N∑
i=1

f (xi )

with xi drawn from p(x)

good news: asymptotically correct

bad news: the variance of E[f (x)] → 0 in O(1/N)
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Stochastic approximations - MCMC

Explore the parameter space according to the density
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Often it is not possible to draw samples directly - need to set up a
Markov chain
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Stochastic approximations - MCMC

Explore the parameter space according to the density
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. . . sometimes things can go wrong - need for efficient proposal
mechanisms
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Complexity of LGMs

updates of par cost O(n3) operations

log |K | K−1

unless particular structures are assumed
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Approximate inference

MCMC is usually considered slow/awkward to apply to LGMs

approximate2 p(latent|par,data) ' q(latent|par,data)

maximizing approximate p̂(data|par) (using q) wrt par
numerically integrate out par by quadrature or MCMC

usually fast but:

still in O(n3)
we would like to include the uncertainty on par
we might not be happy with the approximation q
quadrature can’t be employed if par is large dimensional

2Laplace Approximation, Expectation Propagation
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Gibbs sampling p(latent, par|data)

Why is MCMC for LGMs difficult?
obvious choice (aka Sufficient Augmentation (SA) scheme):

p(latent|par,data) (can be efficiently sampled)
p(par|latent) (bad idea - see figure)
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Gibbs sampling p(latent, par|data)

Ancillary Augmentation (AA) scheme - reparametrization:

ancillary = L−1 latent K = LLT

p(latent|par,data) (can be efficiently sampled)
p(par|ancillary,data) (larger marginal posterior variance)
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Other strategies

Joint sampler by Knorr-Held and Rue (2002):
propose par′|latent and latent′|par′,data and then jointly
Accept/Reject

Interweave AA and SA (ASIS, Yu and Meng 2011)
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Some results

par sampled using MH

latent sampled using Elliptical Slice Sampling (Murray et al.
2010)

Table: Logistic regression - n = 100, par ∈ R2

Sampler min ESS R̂

ASIS 2.3% 1.01
SA 0.7% 1.75
AA 2.0% 1.01
KHR 0.9% 1.04
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Take-home message

fastest convergence and highest sample independence wrt
computations: AA scheme with par sampled using the
Metropolis-Hastings algorithm

clever and complicated proposal are expensive and don’t seem
to pay off
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Parkinson syndromes data

62 subjects

Early stage prediction of development of

Idiopathic Parkinson’s Disease (IPD)
Multiple System Atrophy (MSA)
Progressive Supranuclear Palsy (PSP)

Given neuroimages
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LGM based multiclass classification with multiple sources

latent variables fc(x) with GP prior with covariance

cov(fc(x1), fc(x2)) =

q∑
s=1

wcsCs(x1, x2)

Multinomial likelihood

p(disease = c |latent, sources) =
exp(fc(x))∑m
r=1 exp(fr (x))

this problem is aka Multiple Kernel Learning
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Parkinson syndromes data - multi source

Method Accuracy

GP classifier 0.598
SimpleMKL 0.418
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Parkinson syndromes data

Analysis of brain regions

for this analysis we used only the GM data source

we used an anatomical template as in Shattuck et al. 2008 to
parcellate the GM images into:

brainstem
bilateral cerebellum
bilateral caudate
bilateral middle occipital gyrus
bilateral putamen
all other regions
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Parkinson syndromes data - multi region

Method Accuracy

GP classifier 0.614
SimpleMKL 0.229
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Conclusions and ongoing work

The fully Bayesian treatment of LGMs using MCMC is still an
open question but recent advances in the field allow to tackle small
to moderately large (up to a thousand) inference problems in
reasonable time
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Thank you!

Questions?
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