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The problem

• Infer subject’s cognitive state from fMRI data
• Discriminate between cognitive states as well as

constructing multivariate brain maps (which brain regions
carry discriminative information)

• linear SVMs and Bayesian logistic regression have been
applied with success (Mourão-Miranda 2005 et al.,
Marquand et al. 2010)

• fully Bayesian non-linear discriminative method
• classifiers based on Gaussian Processes are one instance

of latent Gaussian models
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Latent Gaussian Models - (LGM)

p(θ) prior θ

K = LLT covariance matrix
p(ν) ∼ N (0, I) whitened latent

f = Lν transformation
⇓

p(f|θ) = N (f|0,K ) prior latent f
p(y|f) = E(y|ζ(f)) likelihood

ν ∼ N (0, I)

f

y

θ ∼ p(θ)

Squared exponential covariance function

k(xi ,xj |θ) = α exp
[
−1

2
(xi − xj)

TA(xi − xj)

]



LGM - Logistic regression example
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LGM - Logistic regression example
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Latent Gaussian models - Other examples

• Log-Gaussian Cox model (Møller et al. 1998)
• Gaussian copula process volatility model (Wilson and

Ghahramani 2010)
• Gaussian processes for ordinal regression (Chu and

Ghahramani 2005)



Bayesian inference in LGM

Why Bayesian?

A fully Bayesian approach provides a way of:
• including prior information
• inferring model parameters
• obtaining predictive distributions (balance cost of

decisions)
• approaching online learning
• doing model selection

Bayesian inference for these models is intractable



Challenges

Markov Chain Monte Carlo (MCMC) methods provide a way to
sample from the posterior distribution of the model parameters,
but:

• computation of the likelihood is in O(n3) (same complexity
for approximate methods)

• how to devise an efficient sampling mechanism? (e.g.,
what sampler, variable blocking, parametrization)

ν ∼ N (0, I)

f

y

θ ∼ p(θ)

• conditional distributions p(f|θ,y) and p(θ|f,y) are such that
Gibbs sampler updates require a Metropolis acceptance
step



Model structure and efficient sampling

The structure of the model poses a serious challenge to MCMC
methods for efficiently sampling from posterior distributions
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Model structure and efficient sampling

Centered vs non-centered parametrizations (Papaspiliopoulos
et al. 2007)

ν ∼ N (0, I)

f

y

θ ∼ p(θ)
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Data

• Experiments reported here are with a single subject
listening passively to vocal and non-vocal stimuli

• Preprocessing: time correction, spatial smoothing,
masking, normalization, and voxel reduction (t-test)

• We have 200 samples with 4,436 covariates (number of
voxels remaining after the t-test)

• classes: 1 vocal and 0 non-vocal stimuli



Results - Experimental setting

• classifier based on GP (GPC) (same cost for the two
classes)

• Gibbs sampler:
• f|θ,y using manifold methods
• θ|f,y using non-centered parametrization (i.e., θ|ν,y)

• Support Vector Machines (SVM)
• tested with both linear and radial basis function kernel
• parameters (C and kernel bandwidth) were optimized using

10-fold cross validation

• GPC and non-linear SVMs use isotropic covariance/kernel
functions



Results - Classification accuracy

Classification result using 4-fold validation

Method Accuracy (std err)
SVM (lin) 75.5% (5.9%)
SVM (rbf) 76% (1.4%)

GPC 78.5% (3.8%)

class 0 no class class 1
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• we can use the predictive
distribution for finer decision
rules

• by doing so we achieve 92.8%
accuracy on 90 samples



Conclusions and ongoing work

• We are devising efficient sampling methods for full
Bayesian inference in latent Gaussian models

• In the application to fMRI data, performance of the GP
based classifier comparable to SVMs

• Benefits of a fully Bayesian treatment in the descriptive
power of the model

• Include a posterior inference of covariates weights in the
sampling mechanism

• Design of covariance/kernels for fMRI data
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