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Motivation
GP models are elegant Bayesian nonparametric models. They come with three challenges:

I O(N3) complexity

I Inference of covariance function parameters

I Intractable function values (for non-Gaussian p(y | f))

In this work, we combine a variational approximation (for O(NM2) complexity) with MCMC
(for function values and parameters), to give an approximation that is efficient and flexible.

Reference p(y | f) Sparse Posterior Hyperparam.

Williams & Barber[1] [also 2, 3] probit/logit 7 Gaussian (assumed) point estimate
Titsias [4] Gaussian 3 Gaussian (optimal) point estimate
Chai [5] softmax 3 Gaussian (assumed) point estimate
Nguyen and Bonilla [6] any factorized 7 Mixture of Gaussians point estimate
Hensman et al. [7] probit 3 Gaussian (assumed) point estimate
This work any factorized 3 free-form free-form

Key idea
I Inducing point representation

Only compute the value of the GP function at a reduced set of points Z, not necessarily at the
data points.

The model:
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θ ∼ p(θ)

f(x) ∼ GP(0, k(x, x′; θ))

f = [f(x1), f(x2) . . . f(xn)]
>

yn ∼ p(yn | f(xn))

The approximation:
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f(x) ∼ GP
(
k(x,Z)K−1uuu, k(x, x

′)− k(x,Z)K−1uuk(Z, x′)
)

θ,u ∼ q(θ,u)

effectively,
u = [f(z1), f(z2) . . . f(zM )]>

I Minimize KL between Q-process and P-process [see also 8]
Informal argument: the the points on the function be F = {f ,u, f?}, with f ∩ u = f ∩ f? =
f? ∩ u = ∅.

The joint distribution in the P-process can be written

p(f?, f ,u) = p(f? | f ,u)p(f |u)p(u)

The joint distribution in the Q-process can be written

q(f?, f ,u) = p(f? | f ,u)p(f |u)q(u)

Where the p-terms appear in the q-distribution because of the form we’ve chosen above.

Since the distributions contain matching terms, they cancel inside the KL-divergence.

Caveat: we need to deal with the infinite nature of f?.

I Optimal q?(u, θ) available, but intractable
We show that the optimal variational distribution for q(u, θ)

log q?(u, θ) = Ep(f |u,θ)[log p(y | f)] + log p(u | θ) + log p(θ) + const.

I Sample q?(u, θ)
We can evaluate q?(u, θ) in O(NM2) computations. This is easier than a ‘full’ GP with O(N3)
computations, and the dimensionality of the problem is reduced.

Tricks
I Quadrature for the likelihood

Since the likelihoods factorize, compute the variational integral using 1D Gauss-Hermite
quadrature.

Eq(f |u)[log p(y | f)] =
∑
n

Eq(fn |u)[log p(yn|fn)] ≈
∑
n

∑
i

wi log p(yn|f (i)n )

I Whiten/center
To improve the mixing, decorrelate the prior term p(u|θ) as

v ∼ N (0, I)

u = Lv, withLL> = Kuu

The target density is now

log q?(v, θ) = Ep(f | (u=Lv),θ)[log p(y | f)] + log p(v) + log p(θ) + const.

(v and θ are decoupled.)

I Cholesky Backpropagation
In order to jointly sample the function representation v with the covariance function parame-
ters θ, we use the chain rule:

∂E

∂θ
=
∂E

∂L

∂L

∂K

∂K

∂θ

The middle term is tricky: need to conditional on the particular square root: see Smith
[9]. Costs O(N3), but worth it (see below right). Now available in GPy/Autograd,
theano/TensorFlow in the works.

I Fit a Gaussian approximation to init the sampler
Initialize the sampler with a draw from a Gaussian approximation [7] (and fit Z positions, see
below)

I Autotune the HMC using Bayesian optimization.
We implemented a simple autotuning scheme using BO based on Wang et al. [10].

Inducing point positions
Could we be Bayesian about the inducing point positions Z?

I Short answer: no.

I Longer answer: what would the prior be? If we’re free to choose any prior, the optimal one
turns out to be q(Z). In turn, this is optimal when it becomes a Dirac’s delta.

We’ve not tried optimizing Z along with the sampling scheme: we have tried using Z that are
optimal for a Gaussian approximation.

Illustration: Binary classification

Zoptimized Zk-means
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Using the image dataset, left: investigating the effect of increasing the number of inducing
points (and optimizing them). Right: the benefits of the method over a Gaussian approximation.

Experiments
I Log Gaussian Cox processes

1860 1880 1900 1920 1940 1960
0

1

2

time (years)

ra
te

VB+Gaussian
VB+MCMC

MCMC

V
B+

M
C

M
C

0 20 40 60
lengthscale

M
C

M
C

0 2 4
variance

I Multiclass classification

Left: Gaussian VB. Right: VBMCMC

I MNIST Accuracy: 98.04 %

Top: initial/final inducing point positions. Below: difference.

Sampling Efficiency
Our method: jointly sample v, θ with HMC. Extra O(M3) operation to backprop the Cholesky.
Alternative (Gibbs) method: sample alternately v, θ: using HMC for v, MH for θ
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Image dataset - Evolution of the PSRF of the twenty least efficient parameter traces for our
method (blue) and Gibbs (red). Left: RBF; right: RBF with ARD.
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