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Manifold methods for inference in LGMs

Scope of this work

In this work, we study the inference problem in latent Gaussian models. Effi-
ciently sampling from the posterior distribution of the latent process and hyper-
parameters is complex because of their strong coupling. We consider a set of
recently proposed MCMC methods based on the natural geometry of the under-

lying statistical model to achieve efficient sampling.

Latent Gaussian Models - LGMs

» Let X = {x;,...,%,} be a set of n covariates x; € RY, associated with ob-
served responsesy = Y1, ..., Yn.

» Let k be the covariance function parameterized by hyperparameters 6

» Consider the following general form of latent Gaussian models to model the
generative process of the observed y (given X).

p(0) prior 0 . N
K=LL* covariance matrix ML 9~ p(P)
p(v) ~N(0,1) whitened latent
f=Lv transformation f
$
p(f|0) = N(f|0, K) prior latent f y
p(y|f) = E(y|C(f)) likelihood

» Distribution of the observed random variables y: exponential family £ with
natural parameters given by a transformation of the latent variables ((f).

E(yIC(E)) = h(y)g(C(£)) exp(¢(£) "u(y))

» The inference problem amounts in obtaining the posterior distribution over
the parameters and use it to compute the predictive distribution

plysly) = / / / Py £)p(f. |8, 0)p(E, Oly)df.df A6

which is intractable. In this work we apply Markov Chains Monte Carlo
(MCMC) methods to integrate out f and 6.

Centered Parameterization

» Consider the sampling of p(f, 8|y). Efficiently sampling from this posterior
distribution is complex because of the strong coupling between f and 6.

Poor mixing

Non-Centered Parameterization

» If we focus on p(v, 8]y), instead, we can remove the prior correlation.

v~ N(0 6)

Better mixing!

» We consider sampling from the posterior distribution of p(v,0|y). The ex-
pression of the log-joint density reads:

L =loglh(y)] +1oglg({)] + ¢ uly) ¢ =<¢(Lv) =¢(F)

» Define

R=Eylpp'] p=pO,v,y) = Ve(f) (V;EJC()C) I u<y>>

» The FI results in

Gu,=L'RL+I Guy = LTRgg %
OLY 0L 0% log[p(0)] G Gu.o
G = T R— G _ v,V v,
i:0; Y (9(9@ 893-1/ 8(9@(9(9] < GO,U GH,H )

Conclusions and Future work

» non-centered reparameterization improves sampling efficiency; however, it
provides a method to decouple prior correlations, not posterior correlations

» results for few data show that manifold methods applied to the non-
centered parameterization do not improve mixing; preliminary results on
larger data sets show that manifold methods improve mixing

» can we use information geometry to decouple posterior correlations?
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Manifold MCMC Results - Logistic regression with Gaussian Process prior

» Manifold MCMC methods make use of the natural geometry of the under-
lying statistical model to achieve efficient sampling.

» Key quantities in information geometry are the Fisher Information (FI) and
the connection. Consider a statistical model S = {p(y|y)|yy € ¥} for the
observed variables y with parameters @. Under quite general conditions,
S can be considered a C'°° manifold, and is called statistical manifold. Let

L = log|p(y|v)]; the FI matrix GG of S at v is defined as:

G(P) = Ep(y o) {(Wﬁ) (W[/)T}

and is the natural metric on S. Christotffel symbols characterize connections
on curved manifolds:
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Effective Sample Size

» bivariate logistic regression

min ESS nu

avg ESS nu

max ESS nu

min ESS f

avg ESS f

max ESS f

ESS var covariance
ESS length—scale 1
ESS length—scale 2
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» HMC achieves the best ESS but is the most expensive
(VL is expensive)

T
| u
'
'
'
'
'

i
i I
[
.

GIBBS
Simp MMALA

Simp MMALA

HMC

GIBBS GIBBS
MH MALA

GIBBS
MMH




