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Scope of this work
In this work, we study the inference problem in latent Gaussian models. Effi-
ciently sampling from the posterior distribution of the latent process and hyper-
parameters is complex because of their strong coupling. We consider a set of
recently proposed MCMC methods based on the natural geometry of the under-
lying statistical model to achieve efficient sampling.

Latent Gaussian Models - LGMs
I Let X = {x1, . . . ,xn} be a set of n covariates xi ∈ Rd, associated with ob-

served responses y = y1, . . . , yn.

I Let k be the covariance function parameterized by hyperparameters θ

I Consider the following general form of latent Gaussian models to model the
generative process of the observed y (given X).

p(θ) prior θ
K = LLT covariance matrix

p(ν) ∼ N (0, I) whitened latent
f = Lν transformation
⇓

p(f |θ) = N (f |0,K) prior latent f
p(y|f) = E(y|ζ(f)) likelihood

ν ∼ N (0, I)

f

y

θ ∼ p(θ)

I Distribution of the observed random variables y: exponential family E with
natural parameters given by a transformation of the latent variables ζ(f).

E(y|ζ(f)) = h(y)g(ζ(f)) exp(ζ(f)Tu(y))

I The inference problem amounts in obtaining the posterior distribution over
the parameters and use it to compute the predictive distribution

p(y∗|y) =
∫ ∫ ∫

p(y∗|f∗)p(f∗|f ,θ)p(f ,θ|y)df∗dfdθ

which is intractable. In this work we apply Markov Chains Monte Carlo
(MCMC) methods to integrate out f and θ.

Centered vs Non-centered parameterization
Centered Parameterization

I Consider the sampling of p(f ,θ|y). Efficiently sampling from this posterior
distribution is complex because of the strong coupling between f and θ.

ν ∼ N (0, I)

f

y

θ ∼ p(θ)

f |θ

y|f

Poor mixing
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Non-Centered Parameterization

I If we focus on p(ν,θ|y), instead, we can remove the prior correlation.

ν ∼ N (0, I)

f

y

θ ∼ p(θ) y|f ,θ

Better mixing!
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Manifold MCMC
I Manifold MCMC methods make use of the natural geometry of the under-

lying statistical model to achieve efficient sampling.

I Key quantities in information geometry are the Fisher Information (FI) and
the connection. Consider a statistical model S = {p(y|ψ)|ψ ∈ Ψ} for the
observed variables y with parameters ψ. Under quite general conditions ,
S can be considered a C∞ manifold, and is called statistical manifold. Let
L = log[p(y|ψ)]; the FI matrix G of S at ψ is defined as:

G(ψ) = Ep(y|ψ)

[
(∇ψL) (∇ψL)T

]
and is the natural metric on S. Christoffel symbols characterize connections
on curved manifolds:

Γikl =
1
2

∑
m

(
∂gmk
∂ψl

+
∂gml
∂ψk

− ∂gkl
∂ψm

)

Manifold methods for inference in LGMs
I We consider sampling from the posterior distribution of p(ν,θ|y). The ex-

pression of the log-joint density reads:

L = log[h(y)] + log[g(ζ)] + ζTu(y) ζ = ζ(Lν) = ζ(f)

I Define

R = Ey[ρρT] ρ = ρ(θ,ν,y) = ∇fζ(f)
(∇ζg(ζ)

g(ζ)
+ u(y)

)
I The FI results in

Gν,ν = LTRL+ I Gν,θi
= LTR

∂L

∂θi
ν

Gθi,θj
= νT ∂L

T

∂θi
R
∂L

∂θj
ν − ∂2 log[p(θ)]

∂θi∂θj
G =

(
Gν,ν Gν,θ
Gθ,ν Gθ,θ

)

Results - Logistic regression with Gaussian Process prior
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I bivariate logistic regression
with Gaussian Process prior

I results are for n = 100 data
points

I effective sample size (ESS) is
computed on 10000 samples
from the posterior obtained
after 1000 burn-in samples

I HMC achieves the best ESS but is the most expensive
(∇L is expensive)
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Conclusions and Future work
I non-centered reparameterization improves sampling efficiency; however, it

provides a method to decouple prior correlations, not posterior correlations

I results for few data show that manifold methods applied to the non-
centered parameterization do not improve mixing; preliminary results on
larger data sets show that manifold methods improve mixing

I can we use information geometry to decouple posterior correlations?
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