Information Theoretic Novelty Detection

Machine Learning Group

Department of Computer Science - The University of Sheffield

M. Filippone (m.filippone@dcs.shef.ac.uk) and G. Sanguinetti

July 7th, 2009

Outline of the talk

- Novelty Detection
 - General Definitions
 - Maximum Likelihood Approach for i.i.d. data
- Information Theoretic Novelty Detection
 - Univariate Gaussian
 - Multivariate Gaussian
 - Mixture of Gaussians
 - Autoregressive Time Series
- Conclusions and Future Works

- The goal of novelty detection is to identify novelties/outliers in set of observations (datasets)
- Novelty/Outlier:
 - "an observation that deviates so much from other observations as to arouse suspicion that it was generated by a different mechanism."
 - D. Hawkins

- The goal of novelty detection is to identify novelties/outliers in set of observations (datasets)
- Novelty/Outlier:
 - "an observation that deviates so much from other observations as to arouse suspicion that it was generated by a different mechanism."
 - D. Hawkins

Novelty/Outlier detection can be used for two different reasons:

- reduce their impact in the modeling stage (outlier detection)
- flag events/detect changes in order to take decisions on the system (novelty detection)

Novelty detection is employed in many fields:

- Mechanical Engineering (Fault detection)
- Condition Monitoring
- Hydrology

Two types of novelties:

- Event based (Additive Outliers)
- Model based (Innovative Outliers)

The performances of novelty detection systems can be measured by means of:

- Accuracy
- False Positive and False Negative rates

In every application it is important to understand what is the cost of False Negatives and False Positives.

- Neural networks
- Extreme value statistics
- Support Vector methods
- Statistical approaches (Frequentist and Bayesian)

- Modeling the system in a training stage
- Training set:

$$X = \{x_1, \ldots, x_n\}$$

- The model describes what is "normal", on the basis of the training set X
- No alternative hypothesis
- x_{*} will denote a test point

Maximum Likelihood Approach for i.i.d. data

- Assume a parametric form for p(x), i.e. $p(x) = p(x|\theta)$
- The samples are i.i.d.
- Likelihood

$$L = \prod_{i=1}^{n} p(x_i | \theta)$$

- ML approach leads to an estimate $\hat{\theta}$ of θ
- x_{*} can be tested using quantiles

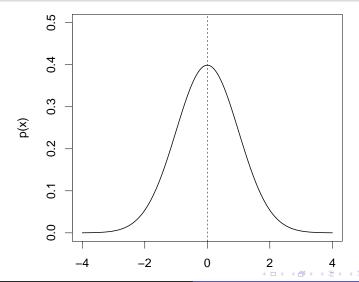
Maximum Likelihood Approach for i.i.d. data

- Assume a parametric form for p(x), i.e. $p(x) = p(x|\theta)$
- The samples are i.i.d.
- Likelihood

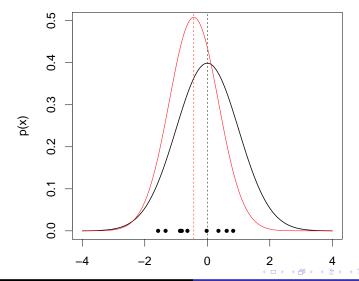
$$L=\prod_{i=1}^n p(x_i|\theta)$$

- ullet ML approach leads to an estimate $\hat{ heta}$ of heta
- x_{*} can be tested using quantiles

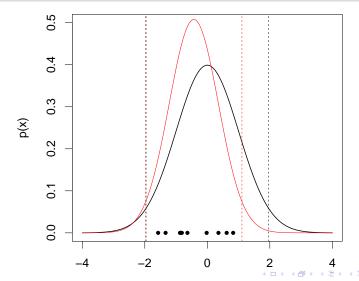
Example



Example



Example



Information Theoretic Novelty Detection

We recast the novelty detection problem in the framework of information theory

- i.i.d. data:
 - Gaussian case (univariate and multivariate)
 - Mixture of Gaussians (univariate and multivariate)
- time series (linear autoregressive)

Information Theoretic Novelty Detection for i.i.d. data

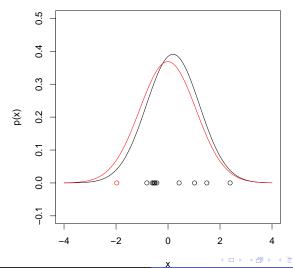
- $p(x|\hat{\theta})$ with $\hat{\theta}$ estimated on X
- $p(x|\hat{\theta}_*)$ with $\hat{\theta}_*$ estimated on $X \cup \{x_*\}$
- Kullback Leibler divergence between $p(x|\hat{\theta})$ and $p(x|\hat{\theta}_*)$
- KL divergence:

$$\mathrm{KL}\left[p\|q\right] = \int p(x) \log \left[\frac{p(x)}{q(x)}\right] dx$$

- $p(x|\hat{\theta})$ with $\hat{\theta}$ estimated on X
- $p(x|\hat{\theta}_*)$ with $\hat{\theta}_*$ estimated on $X \cup \{x_*\}$
- Kullback Leibler divergence between $p(x|\hat{\theta})$ and $p(x|\hat{\theta}_*)$
- KL divergence:

$$\mathrm{KL}\left[p\|q\right] = \int p(x) \log \left[\frac{p(x)}{q(x)}\right] dx$$

KL divergence - Example



- $x_i \sim \mathcal{N}(m, s^2)$
- We introduce:

$$\hat{z} = \frac{\left(x_* - \hat{m}\right)}{\hat{s}}$$

The KL divergence results in:

$$KL = f(n, \hat{z}^2)$$

• The distribution of \hat{z}^2 is known:

$$\hat{z}^2 = \frac{(x_* - \hat{m})^2}{\hat{s}^2} \sim \left(\frac{n+1}{n-1}\right) F_{(1,n-1)}$$

• The KL divergence is independent from the statistics!!

- $x_i \sim \mathcal{N}(m, s^2)$
- We introduce:

$$\hat{z} = \frac{(x_* - \hat{m})}{\hat{s}}$$

• The KL divergence results in:

$$KL = f(n, \hat{z}^2)$$

• The distribution of \hat{z}^2 is known:

$$\hat{z}^2 = \frac{(x_* - \hat{m})^2}{\hat{s}^2} \sim \left(\frac{n+1}{n-1}\right) F_{(1,n-1)}$$

• The KL divergence is independent from the statistics!!

- ullet Testing \hat{z}^2 or the KL divergence leads to the same results
- The thresholds for novelty can be set by using the quantiles of an $F_{(1,n-1)}$ with the desired different rejection rates
- x_* can be tested comparing \hat{z}^2 with the thresholds
- Since the distribution of \hat{z}^2 is exact, the test takes into account the variability due to the finite sample effect, and on average gives the expected false positive rate.

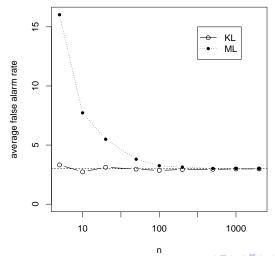
- ullet Testing \hat{z}^2 or the KL divergence leads to the same results
- The thresholds for novelty can be set by using the quantiles of an $F_{(1,n-1)}$ with the desired different rejection rates
- x_* can be tested comparing \hat{z}^2 with the thresholds
- Since the distribution of \hat{z}^2 is exact, the test takes into account the variability due to the finite sample effect, and on average gives the expected false positive rate.

- ullet Testing \hat{z}^2 or the KL divergence leads to the same results
- The thresholds for novelty can be set by using the quantiles of an $F_{(1,n-1)}$ with the desired different rejection rates
- x_* can be tested comparing \hat{z}^2 with the thresholds
- Since the distribution of \hat{z}^2 is exact, the test takes into account the variability due to the finite sample effect, and on average gives the expected false positive rate.

Univariate Gaussian Case - Experimental comparison

- Generate a training set of n points from a $\mathcal{N}(m, s^2)$;
- Generate 10^6 test points from the same $\mathcal{N}(m, s^2)$;
- Compute the number of outliers (false alarm rate);
- Repeat 200 times, and average the false alarm rate.

KL vs ML - Univariate Gaussian



Multivariate Gaussian Case

Training data:

$$\mathbf{x}_i \sim \mathcal{N}(\mathbf{m}, S)$$

Introduce:

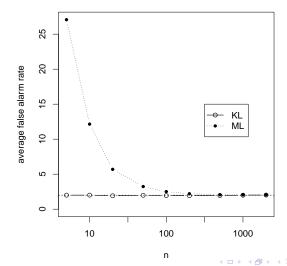
$$\hat{z}^2 = (\mathbf{x}_* - \hat{\mathbf{m}})^T \hat{S}^{-1} (\mathbf{x}_* - \hat{\mathbf{m}})$$

• The KL divergence results in:

$$KL = f(n, \hat{z}^2)$$

Again, the KL divergence does not depend on the statistics!!

KL vs ML - Multivariate Gaussian



Mixture of Gaussians

Pdf:

$$p(x,\theta) = \sum_{k=1}^{c} \pi_k \mathcal{N}(x|m_k, s_k^2)$$

- KL divergence between:
 - $p(x|\hat{\theta})$ the mixture learned on X (for example using the EM algorithm)
 - $p(x|\hat{\theta}^*)$ the mixture learned starting from $p(x|\hat{\theta})$ and EM step on $X \cup \{x_*\}$
- No closed form for the KL divergence between two mixtures!!

Mixture of Gaussians

Pdf:

$$p(x,\theta) = \sum_{k=1}^{c} \pi_k \mathcal{N}(x|m_k, s_k^2)$$

- KL divergence between:
 - $p(x|\hat{\theta})$ the mixture learned on X (for example using the EM algorithm)
 - $p(x|\hat{\theta}^*)$ the mixture learned starting from $p(x|\hat{\theta})$ and EM step on $X \cup \{x_*\}$
- No closed form for the KL divergence between two mixtures!!

Mixture of Gaussians

Pdf:

$$p(x,\theta) = \sum_{k=1}^{c} \pi_k \mathcal{N}(x|m_k, s_k^2)$$

- KL divergence between:
 - $p(x|\hat{\theta})$ the mixture learned on X (for example using the EM algorithm)
 - $p(x|\hat{\theta}^*)$ the mixture learned starting from $p(x|\hat{\theta})$ and EM step on $X \cup \{x_*\}$
- No closed form for the KL divergence between two mixtures!!

Approximation of the KL divergence

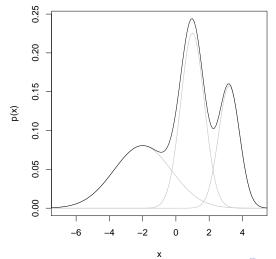
- Two-stage approximation
 - second order approximation of the logarithm

$$p(x|\hat{\theta}^*) = p(x|\hat{\theta}) + \delta p(x|\hat{\theta})$$

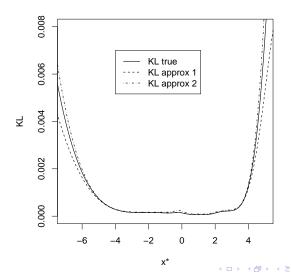
$$\log\left[\frac{p(x|\hat{\theta})}{p(x|\hat{\theta}^*)}\right] = -\log\left[1 + \frac{\delta p(x|\hat{\theta})}{p(x|\hat{\theta})}\right]$$

crisp responsibilities

Example - the pdf



Example - the approximation



Mixture of Gaussian - KL divergence

• the approximation of the KL divergence is:

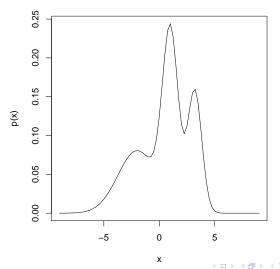
$$\mathrm{KL} = f(n, \hat{z}_k^2, \hat{\pi}_k, \hat{s}_k)$$

where:

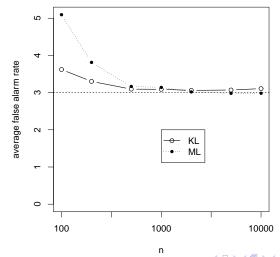
$$\hat{z}_k^2 = \frac{(x_* - \hat{m}_k)^2}{\hat{s}_k^2}$$

- Monte Carlo simulation to obtain the quantiles of the KL divergence
- We can take into account the variability of the means and the variances!!

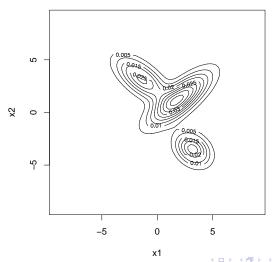
Mixture of Gaussian - Results



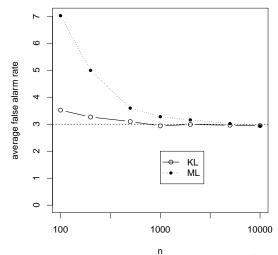
Mixture of Gaussian - Results



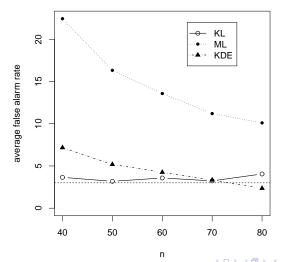
Mixture of Gaussian - Results



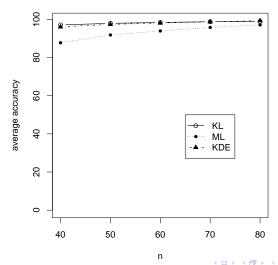
Mixture of Gaussian - Results



Iris - Results



Iris - Results



Autoregressive model - AR(d)

- In many applications the i.i.d. assumption is not valid
- A well established framework for modeling temporal correlation in a series of observation is given by autoregressive models:

$$x_{t+1} = \boldsymbol{\alpha}^{\mathrm{T}} \mathbf{x}_t + \varepsilon_{t+1} + \mu$$

- $\alpha = (\alpha_1, \ldots, \alpha_d)$
- $\mathbf{x}_t = (x_t, x_{t-1}, \dots, x_{t-d+1})$
- $\varepsilon_{t+1} \sim \mathcal{N}(0, \gamma^2)$ and i.i.d.
- \bullet μ allows to model series with any mean value m

Autoregressive model - Parameter Estimation

The parameters of an AR(d) can be estimated in many ways

- Yule-Walker method
- Variational Bayes
- Spectral techniques
- Maximum Likelihood
- Kalman filter

Autoregressive model - Parameter Estimation

$$c_k = E[(x_i - m)(x_{i-k} - m)]$$
 $k = 1, ..., d$

Introducing the vector $\mathbf{c} = (c_1, c_2, \dots, c_d)^{\mathrm{T}}$ and the matrix C:

$$C = \begin{pmatrix} c_0 & c_1 & \dots & c_{d-1} \\ c_1 & c_0 & \dots & c_{d-2} \\ \vdots & \vdots & \ddots & \vdots \\ c_{d-1} & c_{d-2} & \dots & c_0 \end{pmatrix}$$

we see that:

$$\alpha = C^{-1}\mathbf{c}$$

Autoregressive model - Parameter Estimation

Once we have $\hat{\alpha}$, we can estimate the other parameters of the model μ and γ .

Let's focus on $\hat{\gamma}^2$

$$\hat{\gamma}^2 = \frac{1}{n-d} \sum_{i=d}^{n-1} (x_{i+1} - \hat{\alpha}^{\mathrm{T}} \mathbf{x}_i - \hat{\mu})^2 = \frac{1}{n-d} \sum_{i=d}^{n-1} \hat{\varepsilon}_{i+1}^2$$

In a ML approach to novelty detection we test a new data point on the basis of $\hat{\gamma}^2$

Autoregressive model - Information theoretic measure

- Updated version of the parameters when we add a new data point x_* : $\hat{\alpha}_*$, $\hat{\mu}_*$, and $\hat{\gamma}_*^2$
- Information content of x_* in the null hypothesis that it has been generated from the same model:

$$\mathrm{KL}\left[\mathcal{N}(\varepsilon|0,\hat{\gamma}^2)\|\mathcal{N}(\varepsilon|0,\hat{\gamma}_*^2)\right] = f\left(\frac{\hat{\gamma}_*^2}{\hat{\gamma}^2}\right)$$

Let's focus on the ratio $\frac{\hat{\gamma}_*^2}{\hat{\gamma}^2}$

• Write the estimated parameters as their true values plus a term that is given by the fact that the estimation is based on a finite set of observations. For α , for example:

$$\hat{lpha} = lpha + \Delta lpha \qquad \hat{lpha}_* = lpha + \Delta lpha_*$$

- Substitute these relations into $\hat{\gamma}^2$ and $\hat{\gamma}^2_*$
- Compute a first order expansion of $\frac{\hat{\gamma}_*^2}{\hat{\gamma}^2}$

Let's focus on the ratio $\frac{\hat{\gamma}_*^2}{\hat{\gamma}^2}$

• Write the estimated parameters as their true values plus a term that is given by the fact that the estimation is based on a finite set of observations. For α , for example:

$$\hat{m{lpha}} = m{lpha} + m{\Delta}m{lpha} \qquad \hat{m{lpha}}_* = m{lpha} + m{\Delta}m{lpha}_*$$

- \bullet Substitute these relations into $\hat{\gamma}^2$ and $\hat{\gamma}^2_*$
- Compute a first order expansion of $\frac{\hat{\gamma}_{*}^{2}}{\hat{\gamma}^{2}}$

The ratio becomes a function of this form:

$$\frac{\hat{\gamma}_*^2}{\hat{\gamma}^2} \simeq \frac{n-d}{n-d+1} \left[1 + \frac{\Delta}{\sum_{i=d}^{n-1} \varepsilon_{i+1}^2} \right]$$

where:

$$\Delta = \varepsilon_*^2 + \text{correction terms}$$

• The leading term of the ratio $\frac{\Delta}{\sum_{i=1}^{n-1} \varepsilon_{i+1}^2}$ is therefore:

$$\frac{\varepsilon_*^2}{\sum_{i=d}^{n-1} \varepsilon_{i+1}^2} \sim \frac{1}{n-d} F_{(1,n-d)}$$

• We propose this approximation:

$$\frac{\Delta}{\sum_{i=d}^{n-1} \varepsilon_{i+1}^2} \sim \tau \frac{1}{n-d} F_{(1,n-d)}$$

• We compute τ to match the expected value of the

$$\frac{\Delta}{\sum_{i=d}^{n-1} \varepsilon_{i+1}^2}$$

• The leading term of the ratio $\frac{\Delta}{\sum_{i=d}^{n-1} \varepsilon_{i+1}^2}$ is therefore:

$$\frac{\varepsilon_*^2}{\sum_{i=d}^{n-1} \varepsilon_{i+1}^2} \sim \frac{1}{n-d} F_{(1,n-d)}$$

• We propose this approximation:

$$\frac{\Delta}{\sum_{i=d}^{n-1} \varepsilon_{i+1}^2} \sim \tau \frac{1}{n-d} F_{(1,n-d)}$$

• We compute τ to match the expected value of the F-distribution with the actual distribution of the ratio

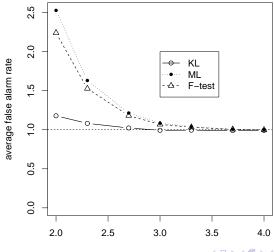
$$\frac{\Delta}{\sum_{i=d}^{n-1} \varepsilon_{i+1}^2}$$

Finally, the test we propose is:

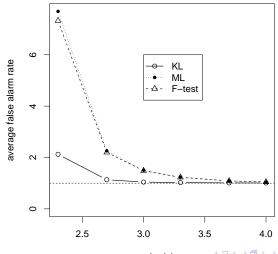
$$\frac{\hat{\gamma}_{*}^{2}}{\hat{\gamma}^{2}} = \frac{n-d}{n-d+1} \left[1 + \tau \frac{1}{n-d} F_{(1,n-d)} \right]$$

$$\tau = \left(1 + 2 \frac{d}{(n-d)} + \frac{2}{n} (1 - \sum_{i} \hat{\alpha}_{i})^{2} - \frac{2}{n} (1 - \sum_{i} \hat{\alpha}_{i}) \right)$$

AR(10) - Results



AR(50) - Results



Conclusions and Future Works

- We recast novelty detection in the framework of information theory
- Important connections with statistical testing
- Control of the false positive rate even for small data sets
- Model selection is crucial
- Extension to the exponential family (?)
- Regularization (?)
- Extend to model based novelties

Conclusions and Future Works

- We recast novelty detection in the framework of information theory
- Important connections with statistical testing
- Control of the false positive rate even for small data sets
- Model selection is crucial
- Extension to the exponential family (?)
- Regularization (?)
- Extend to model based novelties

Conclusions and Future Works

- We recast novelty detection in the framework of information theory
- Important connections with statistical testing
- Control of the false positive rate even for small data sets
- Model selection is crucial
- Extension to the exponential family (?)
- Regularization (?)
- Extend to model based novelties

Novelty Detection Information Theoretic Novelty Detection Conclusions and Future Works

Thank You!