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Inference and model selection

• Parameters and data are viewed as random variables
p(Par) ⇒ p(Par|Data)

• Inference - Bayes theorem:

p(Par|Data) =
p(Data|Par)p(Par)∫

p(Data|Par)p(Par)dPar

• Denominator: model evidence used for model comparison
• Usually analytically intractable!



Relevance of the problem

Uncertainty	  

Geophysics	  

Climatology	  

Epidemiology	  

Ecology	  

Neuroscience	  

System	  Biology	  



Markov chain Monte Carlo
• Explore the parameter space according to the density
• Set up a Markov chain with p(Par|Data) as invariant

distribution



Markov chain Monte Carlo

Proposals can be based on:
• Random walk

θt+1 = θt + ε ε ∼ N (ε|0,Σ)

• Langevin diffusion or Hamiltonian mechanics where the
log-likelihood is viewed as a potential energy and a mass
matrix allows different scalings across dimensions

How do we systematically tune the parameters of the proposal?



Manifold sampling

• Statistical model S = {p(y|θ)|θ ∈ Θ}
• S can be considered a C∞ manifold (statistical manifold)
• Let L = log[p(y|θ)]

• Fisher Information (FI) - natural metric on S:

G(θ) = Ep(y|θ)

[
(∇θL) (∇θL)T

]
= −Ep(y|θ)[∇θ∇θL]

• Christoffel symbols characterize connections on curved
manifolds:

Γi
kl =

1
2

∑
m

(
∂gmk

∂ψl
+
∂gml

∂ψk
− ∂gkl

∂ψm

)



Manifold sampling

• Random walk, diffusion or Hamiltonian dynamic on the
statistical manifold (Girolami and Calderhead 2010)



What about latent variable models?

Example: Logistic regression
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What about latent variable models?
Example: Logistic regression
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Latent Gaussian Models - (LGMs)

p(θ) prior θ
K = LLT covariance matrix

p(ν) ∼ N (0, I) whitened latent
f = Lν transformation
⇓

p(f|θ) = N (f|0,K ) prior latent f
p(y|f) = E(y|ζ(f)) likelihood

ν ∼ N (0, I)

f

y

θ ∼ p(θ)

Squared exponential covariance function

k(xi ,xj |θ) = α exp
[
−1

2
(xi − xj)

TA(xi − xj)

]



LGMs - Other examples

• Log-Gaussian Cox model (Møller et al. 1998)
• Gaussian copula process volatility model (Wilson and

Ghahramani 2010)
• Gaussian processes for ordinal regression (Chu and

Ghahramani 2005)



Model structure and efficient sampling
• The structure of the model poses a serious challenge to

MCMC methods
• sampling p(f|θ,y) and p(θ|f,y) would be extremely

inefficient
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Additional Challenges

• computation of the likelihood is in O(n3) (same complexity
for approximate methods)

• conditional distributions p(f|θ,y) and p(θ|f,y) are such that
Gibbs sampler updates require a Metropolis acceptance
step



Model structure and efficient sampling

Centered vs non-centered parametrizations (Papaspiliopoulos
et al. 2007)

ν ∼ N (0, I)
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An application

• Infer subject’s cognitive state from fMRI data
• Discriminate between cognitive states

• fully Bayesian non-linear discriminative method



Data

• Experiments reported here are with a single subject
listening passively to vocal and non-vocal stimuli

• Preprocessing: time correction, spatial smoothing,
masking, normalization, and voxel reduction (t-test)

• We have 200 samples with 4,436 covariates
• classes: 1 vocal and 0 non-vocal stimuli



Results - Experimental setting

• classifier based on GP (GPC) (same cost for the two
classes)

• Gibbs sampler:
• f|θ,y using manifold methods
• θ|f,y using non-centered parametrization (i.e., θ|ν,y)

• Support Vector Machines (SVM)
• tested with both linear and radial basis function kernel
• parameters (C and kernel bandwidth) were optimized using

10-fold cross validation

• GPC and non-linear SVMs use isotropic covariance/kernel
functions



Results - Classification accuracy

Classification result using 4-fold validation

Method Accuracy (std err)
SVM (lin) 75.5% (5.9%)
SVM (rbf) 76% (1.4%)

GPC 78.5% (3.8%)
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• we can use the predictive
distribution for finer decision
rules

• by doing so we achieve 92.8%
accuracy on 90 samples



Conclusions and ongoing work

• Recent advances in MCMC allow to approach the fully
Bayesian treatment of several models commonly used in
statistics

• Benefits of a fully Bayesian treatment in the descriptive
power of the model (as demonstrated in the fMRI
application)

• We are applying these ideas to mixture models and latent
Dirichlet allocation models
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