
Practical and Scalable Inference for
Deep Gaussian Processes

1 EURECOM, Sophia Antipolis, France
2 University of New South Wales, Sydney, Australia

March 23rd, 2017

Maurizio Filippone Deep Gaussian Processes

The Deep Learning Revolution

Large representational power
Mini-batch-based learning
Exploit GPU and distributed computing
Automatic differentiation
Mature development of regularization (e.g., dropout)
Application-specific representations (e.g., convolutional)

Maurizio Filippone Deep Gaussian Processes

Gaussian Processes - Priors over Functions

Infinite Gaussian random variables with parameterized and
input-dependent covariance

Maurizio Filippone Deep Gaussian Processes

Gaussian Processes

Regression example

−
3

−
2

−
1

0
1

2
3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Maurizio Filippone Deep Gaussian Processes

Gaussian Processes

Regression example

−
3

−
2

−
1

0
1

2
3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Maurizio Filippone Deep Gaussian Processes

Bayesian Gaussian Processes

Inputs = X Labels = Y

K = K (X ,θ)

p(θ) p(θ|Y ,X)

p(θ|Y ,X) =
p(Y |X ,θ)p(θ)∫
p(Y |X ,θ)p(θ)dθ

Maurizio Filippone Deep Gaussian Processes

Challenges and Limitations

Can only model stationary functions (shallow model)
p(Y |X ,θ) might be expensive to compute
p(Y |X ,θ) might not even be computable!

F

Y

θ X

Marginal likelihood

p(Y |X ,θ) =

∫
p(Y |F ,X)p(F |θ)dF

Maurizio Filippone Deep Gaussian Processes

Is There Any Hope?

Can we exploit what made Deep Learning successful for
practical and scalable learning of Gaussian processes?

Maurizio Filippone Deep Gaussian Processes

Deep Gaussian Processes for Large Representational Power

Composition of processes

(f ◦ g)(x)??

Damianou and Lawrence, AISTATS, 2013

Maurizio Filippone Deep Gaussian Processes

Deep Gaussian Processes for Large Representational Power

Composition of processes

F(1)

Y

Θ(1) X

F(2)

θ(1)

Damianou and Lawrence, AISTATS, 2013

Maurizio Filippone Deep Gaussian Processes

Learning Deep Gaussian Processes

Inference requires calculating integrals of this kind:

p(Y |X ,θ) =

∫
p
(
Y |F (Nh),θ(Nh)

)
×

p
(
F (Nh)|F (Nh−1),θ(Nh−1)

)
× . . .×

p
(
F (1)|X ,θ(0)

)
dF (Nh) . . . dF (1)

Extremely challenging!

Maurizio Filippone Deep Gaussian Processes

DGPs - Bochner’s theorem

Continuous shift-invariant covariance function

k(xi − xj |θ) = σ2
∫

p(ω|θ) exp
(
ι(xi − xj)>ω

)
dω

Monte Carlo estimate

k(xi − xj |θ) ≈ σ2

NRFF

NRFF∑
r=1

z(xi |ω̃r)>z(xj |ω̃r)

with
ω̃r ∼ p(ω|θ)

z(x|ω) = [cos(x>ω), sin(x>ω)]>

Rahimi and Recht, NIPS, 2008 - Lázaro-Gredilla et al., JMLR, 2010

Maurizio Filippone Deep Gaussian Processes

DGPs - Bochner’s theorem

Continuous shift-invariant covariance function

k(xi − xj |θ) = σ2
∫

p(ω|θ) exp
(
ι(xi − xj)>ω

)
dω

Monte Carlo estimate

k(xi − xj |θ) ≈ σ2

NRFF

NRFF∑
r=1

z(xi |ω̃r)>z(xj |ω̃r)

with
ω̃r ∼ p(ω|θ)

z(x|ω) = [cos(x>ω), sin(x>ω)]>

Rahimi and Recht, NIPS, 2008 - Lázaro-Gredilla et al., JMLR, 2010

Maurizio Filippone Deep Gaussian Processes

DGPs with Random Fourier Features

Define

Φ(l) =

√
σ2

N
(l)
RFF

[
cos
(
F (l)Ω(l)

)
, sin

(
F (l)Ω(l)

)]
and

F (l+1) = Φ(l)W (l)

At each layer, the priors over the weights are

p
(

Ω
(l)
·j

∣∣∣θ(l)
)

= N
(

0,
(

Λ(l)
)−1

)
and

p
(
W

(l)
·i

)
= N (0, I)

Maurizio Filippone Deep Gaussian Processes

DGPs with random features become DNNs

θ(0) θ(1)

Φ(0)X F (1) Φ(1) F (2) Y

Ω(0) W (0) Ω(1) W (1)

Maurizio Filippone Deep Gaussian Processes

Stochastic Variational Inference

Define Ψ = (Ω(0), . . . ,W (0), . . .)

Lower bound for log [p(Y |X ,θ)]

Eq(Ψ) (log [p (Y |X ,Ψ,θ)])−DKL [q(Ψ)‖p (Ψ|θ)] ,

where q(Ψ) approximates p(Ψ|Y ,θ).
DKL computable analytically if q and p are Gaussian!

Optimize the lower bound wrt the parameters of q(Ψ)

Maurizio Filippone Deep Gaussian Processes

Stochastic Variational Inference

vpar′ = vpar +
αt

2
∇̃vpar(LowerBound) αt → 0

Robbins and Monro, AoMS, 1951

Maurizio Filippone Deep Gaussian Processes

Stochastic Variational Inference

Assume that the likelihood factorizes

p(Y |X ,Ψ,θ) =
∏
k

p(yk |xk ,Ψ,θ)

Doubly stochastic unbiased estimate of the expectation term
Mini-batch

Eq(Ψ) (log [p (Y |X ,Ψ,θ)]) ≈ n

m

∑
k∈Im

Eq(Ψ) (log [p(yk |xk ,Ψ,θ)])

Monte Carlo

Eq(Ψ) (log [p(yk |xk ,Ψ,θ)]) ≈ 1
NMC

NMC∑
r=1

log[p(yk |xk , Ψ̃r ,θ)]

with Ψ̃r ∼ q(Ψ).

Maurizio Filippone Deep Gaussian Processes

Stochastic Variational Inference

Reparameterization trick

(W̃
(l)
r)ij = σ

(l)
ij ε

(l)
rij + µ

(l)
ij , (1)

with ε(l)
rij ∼ N (0, 1)

. . . same for Ω

Variational parameters

µ
(l)
ij , (σ

2)
(l)
ij . . .

. . . and the ones for Ω

Optimization with automatic differentiation in TensorFlow

Kingma and Welling, ICLR, 2014

Maurizio Filippone Deep Gaussian Processes

Comparison with MCMC

Generate data from

N (y |h(h(x)), 0.01)

with
h(x) = 2x exp(−x2)

La
ye

r
1

−
2

0
2

−10 −5 0 5 10

La
ye

r
2

−
1

0
1

●

●
●●●

●

● ●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

−10 −5 0 5 10

●

●
●●●

●

● ●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

−10 −5 0 5 10

●

●
●●●

●

● ●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

Variational − 10 RFF Variational − 50 RFF MCMC

La
ye

r
1

La
ye

r
2

Maurizio Filippone Deep Gaussian Processes

Results - Classification

EEG dataset
(n = 14979, d = 14)

2 2.5 3 3.5
0

0.1

0.2

log10(sec)

Error rate

2 2.5 3 3.5

0.2

0.4

log10(sec)

MNLL

dgp-rbf dgp-arc dgp-ep dnn var-gp

Maurizio Filippone Deep Gaussian Processes

Results - Multiclass Classification

MNIST dataset
(n = 60000, d = 784)

3 3.5 4 4.5
0

0.05

0.1

0.15

0.2

log10(sec)

Error rate

3 3.5 4 4.5
0

1

2

3

log10(sec)

MNLL

dgp-rbf dgp-arc dgp-ep dnn var-gp

Maurizio Filippone Deep Gaussian Processes

Results - MNIST-8M

Variant of MNIST with 8.1M images
99+% accuracy!
Also, check out Krauth et al., arXiv 2016

Maurizio Filippone Deep Gaussian Processes

Results - Model (Depth) Selection

Airline dataset
(n = 5M+, d = 8)

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Random Feature Expansions for Deep Gaussian Processes

2 3 4 5

0.2

0.3

0.4

0.5

log10(sec)

Error rate

2 3 4 5

0.45

0.5

0.55

0.6

log10(sec)

MNLL

2 10 20 30

2.6

2.7

·106

Layers

Neg. Lower Bound

2 layers 10 layers 20 layers 30 layers SV-DKL

Figure 4. Left and central panels - Performance of our model on
the AIRLINE dataset as function of time for different depths. The
baseline (SV-DKL) is taken from ?. Right panel - The box plot
of the negative lower bound, estimated over 100 mini-batches of
size 50, 000, confirms that this is a suitable objective for model
selection.

the test set using one hidden layer. Given the size of this
dataset, there are only few reported results for other GP
models. Most notably, ? recently obtained 99.11% accu-
racy with the AutoGP framework, which is comparable to
the result obtained by our model.

Meanwhile, the AIRLINE dataset contains flight informa-
tion for 5+ million flights in the US between Jan and Apr
2008. Following the procedure described in ? and ?, we use
this 8-dimensional dataset for classification, where the task
is to determine whether a flight has been delayed or not. We
construct the test set using the scripts provided in ?, where
100, 000 data points are held-out for testing. We construct
our DGP models using 100 random features at each layer,
and set the dimensionality to DF (l) = 3. As shown in Ta-
ble 1, our model works significantly better when the RBF
kernel is employed. In addition, the results are also directly
comparable to those obtained by ?, which reports accuracy
and MNLL of 78.1% and 0.457, respectively. These results
give further credence to the tractability, scalability, and ro-
bustness of our model.

4.3. Model Depth

In this final part of the experiments, we assess the scala-
bility of our model with respect to additional hidden layers
in the constructed model. In particular, we re-consider the
AIRLINE dataset and evaluate the performance of DGP-RBF
models constructed using up to 30 layers. In order to cater
for the increased depth in the model, we feed-forward the
original input to each hidden layer, as suggested in ?.

Figure 4 reports the progression of error rate and MNLL
over time for different number of hidden layers, using the
results obtained in ? as a baseline (reportedly obtained in
about 3 hours). As expected, the model takes longer to train
as the number of layers increases. However, the model con-
verges to an optimal state in every case in less than a couple
of hours, with an improvement being noted in the case of
10 and 20 layers over the shallower 2-layer model. The
box plot within the same figure indicates that the negative

lower bound is a suitable objective function for carrying out
model selection.

5. Conclusions
In this work, we have proposed a novel formulation of
DGPs which exploits the approximation of covariance func-
tions using random features, as well as stochastic varia-
tional inference for preserving the probabilistic representa-
tion of a regular GP. We demonstrated how inference using
this model is not only faster, but also frequently superior
to other state-of-the-art methods, with particular empha-
sis on competing DGP models. The results obtained for
both the AIRLINE dataset and the MNIST8M digit recogni-
tion problem are particularly impressive since such large
datasets have been generally considered to be beyond the
computational scope of DGPs. We perceive this to be a
considerable step forward in the direction of scaling and
accelerating DGPs.

The results obtained on higher-dimensional datasets
strongly suggest that approximations such as Fastfood (?)
could be instrumental in the interest of using more random
features. We are also currently investigating ways to miti-
gate the decline in performance observed when optimizing
⌦ variationally with resampling. The obtained results also
encourage the extension of our model to include residual
learning or convolutional layers suitable for computer vi-
sion applications.

Maurizio Filippone Deep Gaussian Processes

Conclusions

Contributions
Novel formulation of DGPs based on random features
We study the connections with DNNs
Scalable and practical DGPs inference - no inverses!

Ongoing work
Large dimensional problems with Fastfood
Other random features
Improving distributed implementation
Adding convolutional layers for image problems
Unsupervised learning, Bayesian Optimization, Calibration, . . .

Maurizio Filippone Deep Gaussian Processes

Conclusions

Contributions
Novel formulation of DGPs based on random features
We study the connections with DNNs
Scalable and practical DGPs inference - no inverses!

Ongoing work
Large dimensional problems with Fastfood
Other random features
Improving distributed implementation
Adding convolutional layers for image problems
Unsupervised learning, Bayesian Optimization, Calibration, . . .

Maurizio Filippone Deep Gaussian Processes

References and Acknowledgments

Reference:
[1] K. Cutajar, E. V. Bonilla, P. Michiardi, and M. Filippone. Random feature

expansions for deep Gaussian processes, 2016. arXiv:1610.04386.

Code:
github.com/mauriziofilippone/deep_gp_random_features

Thank you!

Maurizio Filippone Deep Gaussian Processes

References and Acknowledgments

Reference:
[1] K. Cutajar, E. V. Bonilla, P. Michiardi, and M. Filippone. Random feature

expansions for deep Gaussian processes, 2016. arXiv:1610.04386.

Code:
github.com/mauriziofilippone/deep_gp_random_features

Thank you!

Maurizio Filippone Deep Gaussian Processes

	anm0:
	anm1:

